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VRIJE UNIVERSITEIT AMSTERDAM

Abstract

Business and Economics

Department of Finance

Master of Science

by Ioannis Tsiamas

Predicting the stock market is a complicated task that has attracted the interest of re-
searchers and investors for many years. Although new contributions are made constantly
to the field, no apparent solution exists. The task at hand is even more complex when
it comes to applying short-term, high-frequency predictions. The difficulty stems from
the extreme stochastic nature of the markets, as well as their rapidly changing statisti-
cal properties. For the purpose of this thesis, we approach the topic of high-frequency
stock market predictions, by proposing an ensemble of Recurrent Neural Networks. The
proposed ensemble operates in an online way, weighting the individual models propor-
tionally to their performance in predicting the past observations. The performance of
the models is measured by Area Under the Curve of the Receiver Operating Charac-
teristic. We evaluate the predictive power of our model on several US large-cap stocks
and benchmark it against Lasso and Ridge logistic classifiers. The proposed model
is found to perform better when compared to the before-mentioned benchmarks and

equally weighted ensembles.
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Chapter 1

Introduction

1.1 Efficient Market Hypothesis

Financial markets have been in the center of attention for many decades, for investors
and researchers alike. In that time, a rich, in contributions, research field has been
created, but the answer to a particular question remains debatable. People have been
arguing whether the underlying nature of stock markets, allows for one to make accurate
and consistent predictions. This long-lasting debate has produced a significant amount of
research on the subject, with papers, most of the times, showing contradictory evidence

to one another.

The first, and probably most important theory revolving around that debate is the
Efficient Market Hypothesis (EMH), developed by E. Fama in 1970 [1], for which he
later received the Nobel price in economics. The core idea of the EMH is that all
available information is already incorporated into market prices and thus, prices reflect
their true values. In other words, no individual can receive profit by making predictions
on future prices, since future information is not yet available. In that sense, prices are
not predictable, but random. Prior to the EMH, Fama also argued that the prices of
financial assets follow a process of Random Walk [2]. According to the Random Walk
theorem, future prices are basically the cumulative sum of a random series of numbers,

rendering them unpredictable in any way.

Critics of the theories of Fama, step on the strong assumptions that lay behind the EMH.
Most notable of them is the assumption that market agents are rational. Fama suggests
that even if some participants are irrational, the vast majority being rational will drive
the price towards the true value. On the other hand, there is supporting evidence that

there are times, at which, even the collective actions of people are irrational. The field
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of Behavioural Finance has shown light to many such phenomena, of agents following
certain behaviors, causing the temporal emergence of patterns, that in turn ”break”
the EMH and allow for price predictability. These deficiencies are the outcomes of a
mixture of behavioral fallacies and cognitive biases. A notable example of such pattern
is the January effect [3], according to which, prices tend to increase on average more on
January, than on any other month. Although the effect of these patterns diminishes or
even disappears after they become widespread [4], their emergence, by itself, shows that

the market can be predictable.

With the age of information, the increasing availability of trade-to-trade data and the
development of machine learning algorithms that can handle large amounts of data,
research in stock market predictability has moved from daily, to high-frequency basis.
Accordingly, in this thesis, we employ a collection of machine learning algorithms to

identify and take advantage of small ” January effects” in the US stock market.

1.2 Machine Learning Algorithms and Artificial Neural
Networks

Machine learning incorporates algorithms that can learn patterns and make predictions
on data, without an explicit set of rules. More formally, T.M. Mitchell in [5] describes

the process as’

“an algorithm learns from experience E, with respect to some class of
tasks T and performance measure P, if its performance at tasks T, as measured by P,

improves with experience E”.

Machine learning can be primarily categorized to either unsupervised or supervised learn-
ing. In unsupervised learning, the task of the algorithm is to infer hidden properties of
the given unlabeled data. Popular applications are clustering, dimensionality reduction,
and feature engineering. On the other hand, in supervised learning, the algorithm learns
a function f(-) that maps inputs x to targets y. Tasks of supervised learning include

regression and classification.

In this research, we primarily applied supervised learning and classification. In classi-
fication tasks, targets are categorical and the different categories that an instance can
belong to, are called classes, while the attributes of the instance that are used to classify

it, are called features. For m classes and n features, the process can be defined as:

fix—y xeR"yeN”" (1.1)
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1.2.1 Artificial Neural Networks

A popular class of machine learning algorithms is the Artificial Neural Network (ANN).
The Perceptron (neuron), which represents a neural network at its most basic structure,
was first introduced by Rosenblatt in 1950 [6]. Given a vector of inputs @, a vector of
weights w, a bias b and an activation function f(-), the output o of the Perceptron is
produced by f(x X w + b), where  x w denotes the inner product of the two vectors.
In classification tasks, the activation is an m-step function, with m being the number
of possible classes. Weights and biases are called the parameter of the network and are
usually denoted by 6. Multiple perceptrons can create a single layer neural network, or
Multi-layer Perceptron (MLP), which can be further generalized to N layers. Classic

ANN architectures, where the inputs flow only one way, are called feed-forward.

FIGURE 1.1: A feed-forward neural network

The network is composed of an input layer(green) of size 4, 2 hidden layers(blue) of size
6 and 5, and an output layer(red) that can classify the instance to 3 different classes.
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The training method for such models, the Backpropagation algorithm, was invented in
1970 [7] and is a special case of Automatic Differentiation. Firstly, a loss function L is
defined as a measure of divergence between outputs o and targets y. Then, backprop-
agation basically uses the chain rule 1.2 of differentiation to distribute the error signals
from the derivatives of the loss function, with respect to the parameters 6, all the way

back to the input layer.

0f(g(z)) _ 9f(g(x)) dg(x)
ox dg(x) Ox

(1.2)

Fach parameter gets updated using its error signal and a learning rate 7. The process

is repeated T' times, until convergence is achieved.

pt+) _ g0 _ 9L

Given the above, the ultimate purpose of a neural network boils down to an optimization
task, that of minimizing the error from the loss function with respect to parameters 6

of the network.

0% = argming Z Ly, f(z;0)) (1.4)
z,yeX,Y

Where f(-) is the neural network as a function.

Although the foundations of neural networks have been around for almost half a century,
they only became popular some years ago. The case was that they were models, too
computationally expensive to be trained, and at the same time were outperformed by
other machine learning algorithms, such as Support Vector Machines (SVM) !. The
advances in the computational capabilities of modern machines, that came through the
decreasing prices of Graphical Processing Units (GPUs) allowed for deeper and deeper
architectures that gave birth to deep learning, which eventually outperformed the classic
machine learning algorithms. Many people attribute the growth of Deep Learning to
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012. ILSVRC is an
annual challenge, where participating teams compete for the best accuracy in a number of
computer vision tasks. In the 2012 competition, AlexNet, a network of 650,000 neurons,

achieved the highest accuracy scores, by far surpassing all the other contenders [9]. This

Lsupervised learning algorithm that uses a set of hyperplanes to classify data points in a higher-
dimensional space [8]
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was a turning point for deep learning, and research shifted towards it, in computer vision
and other fields.

1.2.2 Recurrent Neural Networks

While feed-forward networks work mainly with static data, Recurrent Neural Networks
(RNN) can work with temporal (sequential). An RNN keeps a memory of past inputs
and thus can achieve the dynamic temporal behavior needed to model financial time
series. In this thesis, we use a particular type of RNNs, the Long Short-term Memory
(LSTM) network, which is an updated version of the plain RNN that solves the issue of
fading memory. The concepts previously described for feed-forward architectures can be
extended to the LSTM and training can be carried out by the Backpropagation Through
Time (BPTT) algorithm [10]. A more detailed description of LSTM networks is provided

in later sections.

1.2.3 Ensemble learning

Deep networks and Recurrent Neural Networks have a large capacity for discovering
patterns and are able to learn really complex functions. One such demonstration is
their use in the Autoencoder [11][12] family of models, where a neural network learns
a representation of input x to a latent space Z and then reconstructs z/, similarly to
x. Although they are powerful models, the stock market requires special consideration
due to its highly stochastic and dynamic nature. In machine learning, this is known as
concept drift (or non-stationarity in econometrics), according to which, the statistical
properties of the target variable change over time, in unforeseen ways. Therefore, a single
model is incapable of accurately capturing the dynamics of financial time series. Thus,
in order to achieve better predictions, we used an ensemble of LSTMs. An ensemble is
a collection of some base classifiers (LSTMs in this case), that are usually trained on
subsets d of dataset D, and can collectively achieve higher performance metrics than
an individual classifier [13]. The most popular ensemble method is the Random Forest
classifier [14], where the prediction of the ensemble is the equally weighted combination

of the predictions of several decision trees.

1.3 Predictive framework

For the purpose of this thesis, 22 US stocks were selected, to apply our predictive frame-

work. We used one year of raw trade data, that was cleaned and aggregated into 5-minute



Introduction 6

intervals, amounting to roughly 19,000 observations per stock. At every moment, each
stock was labeled as "Buy” (positive class) or ”Sell” (negative class), according to the
direction of the price with respect to the previous one. For every stock, we furthermore
used its primary competitor, thus establishing a universe of 44 stocks. By cross-sectional
aggregation, we additionally created eight sector datasets and a summarizing, universe
dataset. We relied heavily on feature engineering by constructing a large number of

technical indicators, on different time-frames and also on stock and sector level.

The first month of our dataset was solely used for feature engineering. For the other 11
months, we operated on a rolling way, in which one month worth of data are used for
training the models, one week for validating their performance and then predictions are
applied on the following week. This amounts to 21 training-validation-testing periods

per stock.

For every period and for each stock, we trained 12 stacked-LSTMSs?, on different subsets
of the training periods. The predictions of each model were evaluated by the Area
Under the Curve (AUC) score of the Receiver Operating Characteristic (ROC)[15]. The
ensemble predictions for each testing period were a weighted combination of the 12
trained models. The weights assigned to each model were proportional to their AUC
score on the past week of instances. Finally, the overall performance of our predictive
framework on a stock is measured by the average AUC score of the ensembles for the 21

testing periods.

The rest of the thesis is structured as followed. 2nd chapter is devoted to related works on
machine learning methods for predictive modeling in financial markets, the 3rd chapter
is for data collection and feature engineering, in the 4th chapter we analyze in detail the
methods used and 5th chapter we present and discuss our results. The last two chapters

are dedicated to our conclusions and future research.

2LSTMs with more than one layer
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Related Work

2.1 Statistical time-series modelling

Time-series models have been the traditional choice for modeling financial time series,
treating the task of prediction as a regression problem. The Autoregressive-Moving
Average (ARMA) [16] is one the most popular, among a large family of such models.
Proposed by P. Whittle in 1951, ARMA models are able to capture the stochastic
nature of financial time series. They are composed of two parts, the Autoregressive
part of order p, AR(p), which involves p lagged versions of the target variable, and
the Moving Average part of order ¢, MA(q), which involves ¢ error terms in the past.
These two are usually coupled with an Integrated part of order d, where the target
variable is differenced d times until stationarity is achieved. ARIMA models became
widely known, after Box-Jenkins methodology [17] was proposed for choosing the best
p and ¢ parameters. ARMA models were used to successfully forecast returns in a not

so competitive market, like the Helsinki Stock Exchange [18].

Autoregressive Conditional Heteroskedasticity (ARCH) [19] is another time series model,
in which the variance of the error terms is described as a function of the past errors. Its
generalized version (GARCH) [20], also involves an ARMA model for the error variance.
A. Goyal found that the simple ARMA outperforms GARCH models for predicting stock
the S&P500 Index volatility [21].

Vectorized Autoregressive-Moving Average (VARMA) and Vectorized Generalized Au-
toregressive Conditional Heteroskedasticity (V-GARCH) are the multivariate versions
of the previously mentioned models, which can benefit greatly from the correlations of
the time series included. Oil prices and volatility were found to have predictability over
stock market returns, using vectorized models [22]. Several versions of V-GARCH mod-

els were tested for daily predictions on exchange rates and stock indices [23]. Predictions

7
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in financial time series have also been achieved using state-space representations [24][25]

and Generalized Autoregressive Score (GAS) models [26].

2.2 Machine Learning applications in Business

Machine learning methods have been used in a wide range of business applications, with
most of the times, outperforming traditional methods. One of their first use was in the
domain of credit scoring, where the task is to classify loan applications as ”good” (ac-
cepted) or "bad” (rejected). In a 1992 study, Tam et al. [27] compared the performance
of ANNs and k-Nearest Neighbours (k-NN) ! against the industry standard of Logistic
Regression (LR), and found that the ANNs were better in terms of both robustness and
accuracy. Lai et al. [29] used an ensemble, with ANNs as base classifiers, to further
enhance predictability in loan classification. Bagherpour [30] analyzed 20 million mort-
gages between 2001-2016 and achieved the highest and most stable AUC score, ranging
from 90% to 95%, by applying Factorization Machines 2. In an even larger scale study,
Sirignano et al. [32] used deep networks and a dataset of 120 million mortgages, to
achieve an overall AUC score of 94.4%.

Another application of machine learning algorithms in business, is in the task of predict-
ing bankruptcy outcomes. Zang et al. [33] reported accuracy rates of 2-3% higher when
compared fully connected ANNs with the plain LR for predicting firm bankruptcies. In
two recent studies regarding firm bankruptcy prediction, there have been contradictory
results in terms of model comparison, however, different evaluation metrics were used.
Brabozaa et al. [34] argued that bagging and boosting methods were more accurate,
while Tturriaga et al. [35], achieved better performance using a combination of MLPs

and Self Organizing Maps 3.

A heavily machine learning applied field is, also, that of fraud detection, which is char-
acterized by highly skewed data. Awoyemi et al. [37], compared k-NN, Naive Bayes 4
and LR and found that k-NN achieved better performance. Another field, that was de-
veloped fairly recent, is that of Recommender Systems (RS), with applications in most
web-based services. In a 2013-study, Bobadilla et al. [38] compiled a comprehensive

survey of machine learning algorithms with use in RS.

Inon-parametric algorithm that classifies an object according to the majority class of its k nearest
neighbours [28]
Znon-linear algorithm that models variables according to a lower dimensional mapping [31]

3class of neural networks that achieves dimensionality reduction by mapping variables to a two-
dimensional space [36]

4probabilistic classifier based on Bayes’ probability theorem
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2.3 Machine Learning for financial time series prediction

Most of the research regarding machine learning and deep learning applications in finan-
cial time series predictions is quite recent. Some early works include that of Baestanes
et al. [39] and Refenes et al. [40] who used simple ANN architectures and compared
their performance to the LR. Huang et al. [41] found that SVMs can achieve better
results than traditional methods, while Pai et al. [42] proposed a hybrid ARIMA - SVM
method.

Latter contributions include Hegazy et al. [43], who used Particle Swarm Optimization
5 to fine-tune the hyperparameters of an SVM regressor, achieving significantly smaller
Mean Squared Errors (MSE) on several US stocks. Nelson et al. [45] trained LSTM
networks on 15-minute-interval observations, for several BOVESPA (Sao Paolo stock
exchange) stocks, and reported accuracy metrics of 53-55% regarding the next direction
of the prices. Fisher et al. [46] conducted a large-scale research, using daily S&P500
data from 1992 to 2015. They used LSTMs, Random Forests, deep networks and LRs,
and found that a trading strategy, based on the predictions of LSTM, was the most
profitable.

Qu et al. [47], assuming that high-frequency returns trigger periodically momentum and
reversal, designed a new SVM kernel method ® appropriate to forecast high-frequency
market directions and applied their method on the Chinese CSI300 index. Their results
were significantly better when compared with the Radial Basis Function(RBF) 7 kernel
and the Sigmoid kernel.

One of the most remarkable contributions to deep learning for stock predictability is that
in Bao et al. 2017 [48]. They proposed a predictive framework composed of three parts.
First, they apply a Wavelet Transformation(WT) & to the financial dataset(price data,
technical indicators, macroeconomic data). Then the de-noised data are passed through
stacked-Autoencoders ? to generate meaningful features and finally LSTM networks are
used for forecasting. They used daily observations from six stock indices and test the
profitability of their models by purchasing the corresponding future indices, according
to the predictions of the model. They showed that their proposed framework was better

in terms of both accuracy and predictability when compared to simpler methods.

Snature-inspired algorithm that uses a collection of candidate solutions as well as their respective
positions and velocities to find the optimal solutions [44]

Skernel functions enable higher dimensional operations without operating in the actual higher dimen-
sional space

"maps inputs to higher dimensional space using the Euclidean distance
8signal processing, transforms a series from time to the frequency domain.

®many-layered networks that reconstruct the input
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FIGURE 2.1: Proposed predictive framework in Bao et al. 2017

long-short term memory

Another impressive research, that inspired this thesis, is that by M.D. Rechenthin in
his Ph.D. dissertation [49]. He demonstrates the existence of predictability in high-
frequency trading by analyzing certain patterns, using their conditional probabilities.
Furthermore, he extensively touches upon the subjects of concept drift and the impor-
tance of prediction-speed in a high-frequency strategy, His proposed framework involves
creating a pool of thousands of base classifiers(SVMs, ANNs, DTs), and interchanging
between models depending on their performance. The target labels in his research are
7strong sell”, "hold” or ”strong buy”. He reported AUC scores from 0.518 to 0.579
(average of 0.531) for 34 US energy stocks, operating on 1-minute intervals in the last
seven months of 2012. He also found that the introduction of trained classifiers from
within a sector, in the stock’s pool, can significantly increase predictability, achieving

an average AUC score of 0.548.
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Data

3.1 Choice of data

For the purpose of this research we used one year (2014) of high-frequency historical
data, for 22 large-cap ! US stocks, traded in either in NYSE 2 or NASDAQ 2. Aiming to
take advantage of strong cross-correlations between them, we also included the primary
competitor for each of the 22 stocks. In addition, these stocks belong to one of the eight
major sectors of the US stock markets 4, which allowed us to construct sector datasets,
by aggregating the stock datasets cross-sectionally. A summary of the selected stocks is

presented in Table A.1.

Our choice of using large-cap US stocks for our research is motivated mainly by two
reasons; lots of data and high liquidity. The abundance of data that characterizes
US large-cap stocks, even in small time intervals, is essential for training our models,
since a shortage or absence of trading data can disrupt the learning procedure. Of
utter importance is also the liquidity of a stock. High liquidity means that an individual
trader’s decisions will have a negligible impact on the market, which in turn translates to
low trading costs. Maintaining low trading costs is essential for a high-frequency trading
strategy to be effective. Although in this research, we do not examine profitability, it

ensures that our methods are as realistic, as possible.

Imore than 10$ billion in market capitalization
2New York Stock Exchange https://www.nyse.com
3National Association of Securities Dealers Automated Quotations https://www.nasdaq.com

4according to market capitalization: Capital Goods, Consumer Non-Durables, Consumer Services,
Energy, Finance, Health Care, Public Utilities and Technology

12
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3.2 Collecting & Cleaning the data

Data were obtained from the NYSE Trade-and-Quote(TAQ) database, which is accessi-
ble through the WRDS ® interface. The TAQ database contains raw trade information
for US stocks at a micro-second accuracy. We consider only trades that occurred between
the regular opening hours of NYSE and NASDAQ, more specifically, between 09:30 and
16:00.

Raw trade data files contain the date and time that the trade took place, the price of the
trade and its size (in stocks). Of importance are additionally the correction indicator
and the trade conditions of the trade. A correction indicator can take several values,
with 0 and 1, meaning that the trade was valid. Other values indicate that there was
a complication with the trade and it was canceled. The trade condition specifies the
existence and nature of special conditions, under which the trade took place. The vast
majority of trades are completed under normal conditions or are intermarket sweep
orders 8. An overview of the possible trade condition indicators, along with their effects
on open/close prices, can be found in Table A.2. Below we present a snapshot of raw
trade data for stock ABT.

TABLE 3.1: Raw trade data

A random part of the raw data for ABT at the opening of 02-01-2014. A correction

indicator of 0 suggests that the trade is valid. A trade condition of @ means that

the trade took place under normal conditions, while F' indicates that the trade was a
intermarket sweep order.

Date & Time Price Correction Indicator Trade Condition Size

02-01-2014 9:32:23  38.37 0 Q 100
02-01-2014 9:32:23  38.37 0 @ 100
02-01-2014 9:32:23  38.37 0 Q@ 400
02-01-2014 9:32:24  38.37 0 Q 100
02-01-2014 9:32:24  38.37 0 Q 100
02-01-2014 9:32:24  38.37 0 Q@ 200
02-01-2014 9:32:24  38.37 0 F 100
02-01-2014 9:32:24  38.37 0 Q@ 100
02-01-2014 9:32:24  38.36 0 F 100
02-01-2014 9:32:24  38.36 0 F 100
02-01-2014 9:32:24  38.36 0 F 100

5Wharton Research Data Services https://wrds-web.wharton.upenn.edu/

Slets a trader to purchase stock from several exchanges until the given order size is satisfied
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The raw data were processed, to clean them from ”"bad” trades, and aggregate them into
5-minute intervals. ”Bad”, are considered the trades that are either out-of-sequence, late
7. corrected, or completed under special conditions. The removal of these trades ensures
that data contains the least amount of noise. Thus, during the aggregation process, we
took into account only trades that were correct, were completed under regular conditions

or were intermarket sweep orders. For each stock, 5-10% of the total trades were cleaned.

Furthermore, during data aggregation, we constructed some basic features, regarding
prices, price differences, and trading volumes. An overview of these features is presented
in Table A.3. In addition, we did not consider early closing days &, in order to maintain
a consistent number of observations per day (78). Prices were also adjusted for stock
splits 2. Spit information can be found in Table A.4. After aggregation, a total of 18252
observations per stock were produced. A snapshot of the new, aggregated data is shown
in Table 3.2.

TABLE 3.2: Data after aggregation

Part of the aggregated data for stock ABT. The triple dot indicates the presence of
more features. More info can be found in Table A.3

Date & Time Open Close High Low  Trades Volume
02-01-2014 09:30  38.15 38.33 38.4  38.0901 687 93993
02-01-2014 09:35  38.34 38.25  38.34 38.21 796 137549
02-01-2014 09:40 38.251  38.31  38.31 38.13 929 176642
02-01-2014 09:45  38.31 38.3 38.4 38.3 331 51007
02-01-2014 09:50 38.2973 38.33  38.34 38.22 354 41597
02-01-2014 09:55  38.33  38.295 38.33 38.26 423 48978
02-01-2014 10:00  38.29 38.14 38.295  38.12 530 78376
02-01-2014 10:05  38.14  38.155 38.18 38.13 351 50904
02-01-2014 10:10  38.16 38.11 38.2 38.11 540 100286
02-01-2014 10:15  38.113 38.1 38.13 38.09 323 48358

It is worth mentioning that the data are characterized by only a few missing values.
Specifically, due to a network failure on 30 October 2014, between times 13:07 and 13:34
[50], half of the NYSE stocks were not trading. Furthermore, GM and GILD stocks
have no trading activity in periods 30 June 2014 14:30-14:50 and 27 October 2014 09:45-
10:25 accordingly; both for unclear reasons. We corrected missing data, by propagating

forward the last valid price, in price related features, and filled with zeros the rest.

“outside of normal trade hours
8regular market hours end at 13:00, usually Thanksgiving, or Christmas

9corporate action that decreases the number of shares
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3.3 Sector and Universe datasets

One of the goals of this research is to take advantage of the possible interconnectedness
in markets, to boost our models. Subsequently, we constructed sector datasets and an
overall universe dataset using the basic features of the 44 stocks. The shares outstanding
for each stock were obtained from Ycharts 1© and used to create market capitalization
series, that can be then translated into weighting factors for each stock within its sector

and within the universe.

Market capitalization at any moment ¢, for stock s;, is calculated as the product of shares
outstanding and price at ¢. Furthermore, market capitalization for sector S; is calculated
as the sum of market capitalization for each stock s; within it. Finally, the weighting
factors for each stock are determined by the fraction of its market capitalization to the

overall market capitalization of the sector and the universe accordingly.

Mcapgsi) = SharesOutstandz’ngési) Pc(lso’g&t (3.1)
Mcapg‘sj) = Z Mcapgs") (3.2)
SiESj
(s _ Meap™
Mecap,;™

Using the weighting factors, we constructed the basic features ! presented in Table
A.3 on sector and universe level. For example, price-related features were calculated as
the weighted average of individual stock prices, while volume related were calculated by

summing the individual volumes.

3.4 Target Variable

The objective of this research is to provide a framework that, at every instance, assigns
probabilities of an upward or downward move, regarding the direction of the price in the
next 5 minutes. Thus, periods of positive returns are labeled as ”Buy”, while periods

with zero or negative returns are labeled as ”Sell”.

1%financial data platform https://ycharts.com/

11with the exception of price difference related features
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R, = - ’ 3.4
! P, open,t ( )
1 R >0 class ”Buy”
Y, = t y
0 R <0 class 7 Sell”

In high-frequency settings, an important number of instances results in zero returns, thus
This phe-

nomenon is called class imbalance and may affect the training procedure if not treated.

causing the class ”Sell” to be overpopulated in comparison to class "Buy”.

It is further discussed in Chapter 4. Approximately every stock experiences an average
ratio of 46% Buy and 54% Sell, although it may vary from time to time. In Figure 3.1
we provide an illustration of the class "Buy” probabilities for stock ABT, considering
rolling windows of 78, 234 and 1326 past observations. Given the fast-shifting prob-
ability distributions of our target variable, it becomes clear how important the use of

multiple models becomes, in order to capture this variability.

: —— window 78
—— window 234
0.6 window 1326
d.llﬂ \m )Ji ] ,i H |[ 'I\ !u i )il
H |H \ ‘I ” \“ \ ;“ ik "\H" 'i
i *"I» Ui il
0.4 | . |

FIGURE 3.1: Probability distribution of class ”Buy”

Although the relativelly short period of 78 observations is really volatile and can not
provide much insight, some clear trends can be found by looking at the 234 and 1326
windows.
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To further demonstrate the difficulty of our task, we provide a scatter plot of the 3 major
principal components 1% for stock ABT. The classes "Buy” and ”Sell” do not seem to

be separable, at any obvious way, at least in this three-dimensional space.

Buy
Sell
- 4
. ....: o . . o N 2
- 0
= 2
- 4

FIGURE 3.2: Scatter-plot of ”Buy” and ”Sell” classes

1000 observations from each class of stock ABT, scattered according to the first three
principal components.

3.5 Feature Engineering

In order to enhance our models’ predictability, we constructed a large number of technical
indicators. Technical indicators are measures used in technical analysis, that aim to
identify "buy” or ”sell” signals in charts and graphical representations of stocks. They
can be categorized in trend, volatility, volume and momentum indicators. People have
been trading based on them by using heuristic rules. Although their true value has
been argued, a model should be able to benefit from them, since they can provide a
7summary” of a stock on different time-windows. Using technical indicators as features
in machine learning is known as quantitative technical analysis. The indicators used in

this research, along with their formulas and selective figures are presented in Section

Al

12Principal Components Analysis (PCA) is a linear method of dimensionality reduction, according to
which a set of n features are transformed into m uncorrelated features
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Aside from technical indicators, we used rolling regressions, as features, on the percent-
age change in prices (Peoses Phigh, Plow, Powap). More specifically we applied AR(1) 3.5

models with a rolling window of 1326 (approximately one month of observations).

Ri=c+ ¢Ri—1+ ¢ € ~ N(O, 1) (35)

0.015 —— Predicted
—— Actual
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FIGURE 3.3: AR(1) Predictions

Rolling AR(1) model for the returns of ABT. Mean Squared Error(MAE) = 0.00075

Furthermore, the probability distributions and conditional probability distributions of
target class "Buy” were included as features. We used rolling windows of 36, 72, 234,
1326 observations, for probabilities P(y; = Buy) and 72, 234, 1326 observations, for
conditional probabilities P(y; = Buy|yi—1 = Sell), P(yr = Buy|yi—1 = Buy). Certain
trends can be observed along the span of one year, which can potential aid our models’

predictive power.
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FIGURE 3.4: Conditional Probabilities

Conditional Probabilities for ABT, using a rolling window of 1326 observations

Trading intensity can vary from time to time in the stock markets, especially in a high-
frequency setting. There are specific parts of the day, that are more trading intensive
than other. Figures 3.5 3.6 indicate the presence of time-specific patterns during a
trading day. For that reason we included dummies that indicate the specific time of
each trade (minutes, hours, days). That was also suggested in [49], and was found to

aid the predictive power of models.
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F1GURE 3.5: Trading Intensity

Average number of trades during the day as measured by taking into account all the 44
stocks at our disposal. A clear trend can be observed throughout the day, with trade
intensity decreasing until 13:00 and then increasing exponential when approaching close.
The irregularity at 10:00 happens due to the 710 o’clock rule”, according to which, most
traders avoid the first 30 minutes of the day due to high volatile price movements.
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FIGURE 3.6: Price Movements

Class buy probabilities through-out the day, as measured by taking into account all the
44 stocks of this research. Although really volatile, by observing the moving average
through the day, we can identify a small decreasing trend until 13:00, which is followed

by an increasing one.



Chapter 4

Methods

4.1 Recurrent Neural Networks

RNNs have been effectively used to model sequential data, where distributions are not
stationary. In sequential data, the probability of a certain event depends on the proba-

bilities of past events.

Plxy) = M Pxs—i|@p—io1, ..o 1) (4.1)

A popular application of RNNs is in the field of Natural Language Processing (NLP).

” in order

Given the sentence ” The weather is cloudy today, it is probably going to ...
for a model to be able to predict the last word, it needs to remember the occurrence of

past words, as well as their respective order. Thus, the need of memory is apparent.

RNNs have the ability to remember past observations by maintaining a cell state c,
which is constantly updated. At every time-step ¢, when input z; is fed to the network,
it is used to update the state from c¢;_1 to ¢;. Then the output o; is calculate using the

new state c;.

W = (U2 + W=D 4 b,) (4.2)

o) = g(vel) +b,) (4.3)

Where U is the input weight matrix, W is the recurrent weight matrix, V is the output
weight matrix and b, b, are two bias vectors. Usual choices for f and g, in classification

tasks, are the Hyperbolic Tangent Sigmoid (tanh) and Softmax functions accordingly.

21
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x —Xx

e
et +e %
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tanh(x) = (4.4)

eTk

W sk € [1,m)] (4.5)

softmax(xy) =

Both of them are heavily used in deep learning. The tanh function is zero centered,
with strong gradients around that point A.1, which ensures stable and robust training.
Since Y ;" softmax(z;) = 1, the softmax function is used to transform input z to a

probability distribution of m classes.

An RNN is basically a feed-forward network that loops over itself. It can also be pre-
sented in an unfolded way for better visualization. These two version are presented in
Figure 4.1, where c is the cell state, = is the input, o is the output, U is the input weight

matrix, W is the recurrent weight matrix and V is the output weight matrix.

0

O %11 t t+1

0
%4 VT VT
% C C

v
w
c W t—1 t t+1
O ¥ —»—>05~>05~>0"~
Unfold
U TU U U
X i M Nipi

FIGURE 4.1: A Recurrent Neural Network

Left: RNN folded, Right: RNN unfolded. Biases are omitted for ease of representation.
Source: http://www.wildml.com

Backpropagation Through Time is used for training RNNs. It works in the same way as
regular Backpropagation, using the chain rule to estimate error signals, but also along
the time dimension. The problem arises from the fact that the error signals coming from
past observations become weaker and weaker, and thus long term-dependencies cannot
be modeled efficiently. The primary reason for the weak signals is the derivative of the
cell states with respect to previous cell states. If ]8‘2—’:\ < 1, for consecutive states,
the derivatives of the long-term states become really small 4.6 This difficulty can be

overcome by using LSTM networks.

8ct 8ct 8Ct_1 80t7j+1

= . ~0 4.6
8015_]' (9Ct_1 8ct_2 6015_]' ( )
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4.2 Long Short-term Memory Networks

The LSTM is an updated version of the vanilla RNN. The first difference between the
two networks is that the cell states in the LSTM are connected in a linear way. That
is how the vanishing gradient problem is solved, since the derivative now is just the
weight W, which connects previous and current states. The second difference is the use

of multiple sigmoid (o) gates that control the information flow through the model.

o(x) = — (4.7)

The mathematical configuration of the LSTM is given in the following equations.

9O = tanh(WyxW + W, h=D b)) (4.8)
i = 0(Wix® + W;h(Y 1+ b)) (4.9)
fO =o(Wpx® + Weh(tY 4 by) (4.10)
o) = 0(Woox® + W,,h=1 4 b)) (4.11)
B = g® o 4 (=D o FO (4.12)

h®) = tanh(c®) ® o® (4.13)

Where © denotes the element-wise multiplication operator, W, denotes input weight

matrices, W,;, denotes recurrent weight matrices and b, denotes bias vectors.

The basic structure of an LSTM contains four essential gates, that control the flow of
information in every training iteration. These are the input modulation gate g(*) 4.8,

input gate i 4.9, forget gate f() 4.10 and output gate o® 4.11. 1

1a slight change in notation from the RNN, since o denotes the output gate, the actual output of the
LSTM is denoted as h
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The input modulation gate transforms the previous state and the new input via a tanh
activation function. It represents the new candidate values that could be added to the
cell state. The choice of the non-linearity for this gate stems from the fact that should
always add value to the cell state. Thus the output of the tanh, which is in [—1, 1], suits
perfectly.

The input gate, weights the new candidate values coming from the modulation gate,
before being added to the cell state. The sigmoid function, with outputs in [0, 1] will

provide weight according to the relevance of the information.

The forget gate serves the cause of filtering the current information contained in the cell
state. An output of 0 from the sigmoid function means that the model should forget
everything, while an output of 1 means that it should retain this information in its

entirety.

Lastly, the output gate is of similar function, as the other two sigmoids. It highlights

the information that will be passed to the next hidden state.

After the calculation of the gates, the cell state is updated 4.12 and the output at
time-step t is calculated 4.13.

& ® ®
| |

I

FIGURE 4.2: A Long Short-term Memory network

An unfolded version of the LSTM cell denoting the four gates, inputs and outputs.
Source: http://colah.github.io

In the model architecture implemented in this thesis, we used two LSTMs stacked on
one another (stacked-LSTM). The two LSTMs are of different size, with the first one
being larger than the one the one that follows it. This is a common practice, aiming
to identify different features in terms of specificity. The first layer is able to recognize
more general features, while the second one targets at more specific ones. For example,
in the computer vision task of animal classification, first layers detect features like edges

and lines, while the latter ones detect more specific ones, like eyes or ears. In our
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implementation, the respective sizes of the two LSTMs were set after tuning to 64 and
32.

Regarding the maximum memory of the LSTMs, which is usually called sequence length,
we set it at 5. This decision is part of several trial-and-error experiments that were
conducted. The gains from using longer sequences, were not justified by the extra
computational cost that comes with them. It also ensured, that long-term information
is fed into the model, by the use of technical indicators computed over various time-

windows. Thus, the use of large sequence lengths is rendered obsolete.

4.3 Layer Normalization

While training many-layered networks, it is important to maintain the inputs of the
activation functions centered around zero. Due to the nature of the non-linearities tanh
and o, activating at extreme values, cause really weak gradients during Backpropa-
gation, which in turn will cause certain neurons to saturate 2. The behavior of the
non-linearities, along with their derivatives can be observed in Figures A.1 A.2. Nor-
malizing the data before feeding it to the model is not enough, as after passing through
many layers and can diverge from a standard normal distribution. To counter a potential
shift in the distribution of the inputs of every layer, a number of techniques have been

developed, with Batch Normalization [51] being the most widely used.

According to Batch Normalization, before applying the activation functions at every
layer, its inputs are normalized according to their mean and standard deviation, across
the batch size dimension dy. Batch Normalization has been found to speed up training,
while also acting as a regularizer 4.5. Although efficient, it can not be properly applied
to recurrent networks, since the appearance of the extra sequence length dimension do

complicates the calculation of normalization statistics.

Layer Normalization was proposed in Ba et al. 2016 [52], as a variant of Batch Normal-
ization that can be applied to recurrent networks. According to Layer Normalization,
moments are calculated across the sequence length ds dimension instead. Layer Nor-

malization can be defined as:

7 _
LayerNorm(Z; o, 3) = TM Oa+p (4.14)

2The result of extreme compression of the input between bounds [-1, 1] for tanh and [0,1] for &
is small derivatives, A saturated neuron, passes a really weak error signal and does not contribute to
training.
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Where a (gain) and B (shift) are trainable parameters that are updated according, to
fit the distribution of the output, while g and o are the mean and standard deviation,

across the dimensionality ds of input Z.

1 &
= — Zi 4.15
n= ; (4.15)
1 &
=\a > (zi—w) (4.16)
=1

With the inclusion of layer normalization, equations 4.8, 4.9, 4.10, 4.11, 4.13 become:

g = tanh(Layer Norm(W ,,xY; a, By) + LayerNorm(Wguh™: By)) (4.17)

i) = o(Layer Norm(Wi,x®: a;, 3;) + Layer Norm(Wh® Y oy, 8,)) (4.18)

o —U(LayeTNorm(fox o, By) —i—LayerNorm(thh( ozf,ﬁf)) (4.19)

oY) = o(LayerNorm(Wo,x; a,, B,) + LayerNorm(Wo,h*V: a,, 8,))  (4.20)

A g0 @ 0 4 =D g O (4.21)

h) = tanh(LayerNorm(c; a, 3,)) ® o® (4.22)

Note that equation 4.12 is unchanged, but was included for convenience. Although
not mentioned in [52], bias vectors b become redundant with the introduction of Layer
Normalization, since 3 parameters replace their function. Thus, the bias vectors are
excluded from equations 4.17, 4.18, 4.19, 4.20. Lastly, no alteration is made to the

softmax layer, as being the last layer, ensures strong error signals.
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4.4 Cross-Entropy loss

The outputs of the stacked LSTM cell are passed through a softmax layer that transforms
them into probabilities for class ”Sell” and "Buy”. To account for the issue of class
imbalance that was mentioned in Section 3.4, when estimating the loss, h®) is weighted
by wWelass, which is estimated from the ratio of positive and negative examples in the
training set. Note that the weighting of the stacked-LSTM’s output takes only place
during training and not in inference. Finally, the cross entropy loss function is used to
measure the error of the probabilities pweighted(t) = softmazx(Wegss h(t)) with respect

to the one-hot representation of the true value y(¥). The cross entropy loss for one

®)

weighted and y® is defined as:

instance t between p

E(y(t) ) pglighted) == Z y’(:) log(pgct)welghted) (423)
ke[Sell,Buy|

Where yg,)uy =1 and yg)ll = 0, if true class is ”Buy”. Basically, for every instance, the

loss is the negative log probability of the ”wrong” class.

Inputs of the model, are in the form of a three-dimensional tensor, with dimension d;
corresponding to batch size3, dy to sequence length and d3 to the number of features.
The first two dimensions remain the same as input travels through the model. The last
one (d3) changes according to the size of each layer and finally, after the softmax layer,

becomes two (number of classes).

Equation 4.23 can be generalized, to account for the general loss in each training itera-

tion, averaging it over the batch size and sequence length dimensions.

dy  do

E(Yy Pwezghted d Z Z Z y(i’t)log(p](;i)eighted) (424)
1%2 521 1=1 pe[Sell, Buy)

4.5 Regularization

One of the most frequent issues, happening when training deep or recurrent networks, is
overfitting. Overfitting the data means that the network learns a function that maps the
training inputs to the outputs, in such a good way, that is not generalizable. Thus, even

though performance on the train set is really high when the network is introduced to new

3B number of instances from the training set that is used in every iteration. 32 is used for this
research, more in Section 4.9.1
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data, it performs poorly. Two measures are taken in this thesis to counter overfitting

and make the trained models as generalizable as possible.

4.5.1 Weight decay

Weight decay aims to penalize weight-complexity and prevent certain weights to be
used more than others, by modifying the loss function. The most popular weight decay
method is the £2 regularization, which uses the Euclidean norm of the weights as an
extra term in the loss functions. A parameter A is chosen to control the magnitude of

the weight decay.

Lreg =X 162 (4.25)
0cO

Where ® denotes the collection of parameter matrices in the model, except biases 4 .
Namely, the regularized parameters are W, timaz, Wi (i € (9,1, f,0] and j € [z, h])
and oy (i € [g,1,9,0,c]). Regarding the regularization of the Layer Normalization pa-
rameters, no clear answer exists in the literature. We decided to regularize the gain pa-
rameters a, as they are of multiplicative nature. Shift parameters 3 are not regularized
since they act like biases. An overview of the parameter dimensions and regularization

is provided in Table 4.1.

The averaged regularization loss is added to the cross-entropy loss function and the

collective loss of the model is defined as followed.

di d2

1 it it A
LY, Pucighied) = =723 D i Hog(p,i,w)eightem@ > 11012 (4.26)
1=1 t=1 ke[Sell,Buy] 0cO

Via trial-and-error, the appropriate parameter for the weight decay was found to be 0.1.

4.5.2 Dropout

Dropout, introduced in Srivastava et al. 2014 [53], is another technique that counters
overfitting and enhances model generalizability. According to dropout, in each training
iteration, every neuron has a probability p to be turned off. This way, the architecture

of the network is different in every iteration, preventing it from overvaluing certain

4Since biases are additive terms, they do not contribute significantly to the complexity of the model,
unlike the weight terms, which are multiplicative. Thus, biases are usually not regularized.
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activations, restricting co-dependencies between neurons, while also improving training

speed.

FIGURE 4.3: Dropout

Demonstration of dropout applied to hidden layers. Left: Original network, Middle:
Neurons chosen to be turned-off, Right: New network for this training iteration

It is worth mentioning that dropout affects the network only during training. When
applying the trained model, dropout is deactivated, and the full network is used for
predictions. Although dropout may be applied to recurrent layers as well [54], we found
that its use on top of weight decay was restricting significantly the memory capacity
of the model. Thus, dropout is used only to non-recurrent layers. More specifically a
dropout layer is introduced before inputs go through the stacked LSTMs, and another
one between the stacked-LSTM and the softmax layer.

Since a large number of features is used, we applied an aggressive dropout rate to prevent
overfitting. For the input dropout, we used a different rate for stock specific features
5 . The reason for biasing the procedure towards stock specific features, is that they
contain most of the relative information, in contrast to competitor or sector features.
Only about 40% (97_%%) of the features used in training are coming from the stock
specific dataset. Thus, by applying different dropout rates, we ensure that the ratio of
active features per training iteration is approximately 50%-50% for stock related and
the non-stock related. The rates used for the input dropout are 50% and 70%, while for

the output is 50%.

4.6 Input Construction

As mentioned in Chapter 3, we engineer a great number of features. Using all of them in
training our models, would cause a significant decrease in training time and would also
hurt the generalizability of the models. After all, our predictive framework is quantity-

based, meaning that we aim to produce many simpler models, that will collectively

5These are features coming directly from the stock dataset. The rest are coming from the competitor
and sector datasets.
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provide the best possible predictions. For the ensemble to be effective, we need to boost
the variability of the produced models. To achieve that, for each of the 12 models
trained, to apply predictions for time period T', we chose a different subset D;,i € [1,12]
of the training set D) as input. Subsets D; differ between in both the number of

instances and features.

— - features -

Subset D,

Subset D,

instances

Subset D,

TRAIN SET D"

FIGURE 4.4: Randomized input selection

Subsets D, differ with each other in both dimensions of the Train set DT). Note:
Instances are always ordered, while features are not.

4.6.1 Instances selection

The length of the train set is 4 weeks, approximately 1560 instances (L). To randomize
the period size of the train set used for each model;,i € [0,12], we select periods of
8, 10 and 12 days, which translates to 624, 780 and 936 observations in length (I;).
Four models are build for every period. A starting point is chosen at random between
L— %li and the ending point is the length of the period (/;) plus a random integer in

range (—%Oli, %li).
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4.6.2 Feature selection

Unfortunately, unlike other machine learning algorithms, the nature of the LSTM does
not allow for a fast feature selection method, based on some information gain criteria.
Thus, feature selection is also randomized, and biased towards stock-specific features.
For training model;, in time-period T, for some stock s, every time we include all the
features from the stock s dataset, and randomize the selection from the rest of the
datasets. We have at our disposal 4 datasets categories from which features can be
selected. These are the main competitor dataset, highly correlated stocks to stock s
dataset, sector S of stock s dataset and the universe dataset. Each dataset is paired
to a time-window, based on which features were engineered . Thus, every dataset gets
assigned to features from certain time-frames. By denoting with r a vector containing

the 4 time-frames in random order, we can summarize the procedure as:

e Select all stock-specific features

e Select features from main competitor dataset on time-frame r;
e Select features from sector dataset on time-frame ro

e Select features from universe dataset on time-frame 73

e Pick the 3 stocks with the highest cross-correlation between them and stock s and

select from their respective datasets features on time-frame r4

e As mentioned in Section 3.5, included are also dummies indicating clock time and

day of each instance (minute, hour and day)

4.7 Implemented Architecture

Here we provide a summary of the implemented model architecture. As mentioned in
Section 4.5.2, there two different streams of data entering the model, the stock related
and the non-stock related. Two different dropout rates are applied and then the two
streams are concentrated along ds dimension. The concentrated tensor flows through
the stacked LSTM and its outputs are weighted according to the class weights derived
from the train set. Another dropout layer is applied before the data is transformed
into probabilities via the softmax layer. Finally, the loss for this training iteration is
calculated as the sum of the cross-entropy loss and the regularization loss, averaged

along dimensions d; and ds.

Stechnical indicators, rolling regressions and probability distributions were produced using look-back
windows of 6, 12, 36, or 78 instances; we excluded the long-term window of 236
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FIGURE 4.5: Model architecture (training)

A slightly different architecture takes place when performing inference, as dropout and

class weights are deactivated.

4.8 Parameter initialization

The initialization of the model parameters @ defines the starting point at the loss surface
and can play a crucial role in the optimization process. Ill-conditioned initialization may
slow down training by adding too much noise, or even prevent the algorithm from con-
vergence. The concept that drives weight initialization is that they need to be initialized
in way, that ensures strong gradients in the first training iterations and thus preventing

dead neurons.

The derivatives of the activation functions tanh and sigmoid(c) must be taken into

consideration.

at‘”;g(:”) =1 — tanh®(z) (4.27)
do(x)
oo = o(@)(1 - o(2) (4.28)

From equations 4.4, 4.27 and 4.7, 4.28 we can derive that in order to have strong gra-
dients, the inputs of x of tanh(z) and o(z) need to be centered around zero. This can
also be observed in the graphical representation of the two functions in Figures A.1,
A.2. Usually, since data is also normalized, initial weights are sampled from a normal
distribution N with zero mean and small variance. A common practice is to use the
Glorot initialization [55]. The idea, behind the Glorot initialization, is to sample the
weights from a distribution that will ensure preserving the variance of the signal through

each layer.
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Given that incoming data X is normalized and independent from W, the variance of
the output is equal to ny;, - Var(W), with n;;, being the number of incoming neurons
to the layer [. Thus, in order to preserve the variance during the forward pass, weights
should be initialized with zero mean and ﬁ variance. The same applies to preserving
the variance through the backward pass (Backpropagation). Thus, in order to maintain
the variance through both passes, weights should be initialized with variance equal to

two times the reciprocal of the sum of the incoming and outgoing neurons of each layer
l.

2
Var(W)) = ———— (4.29)
Nyin + Ny out
Using Layer Normalization in the LSTMs, further ensures that inputs to activations
are centered around zero. The parameters a and 3 of the Layer Normalization are

initialized, with the hypothesis that outputs are standard normally distributed. Thus «

parameters are initialized to 1 and 3 parameters to 0.

Regarding the softmax layer, its performance is not sensitive to the initialization of its
weights. The softmax layer is placed right before the loss function and thus the error
signals are really strong. Furthermore, softmax is strictly convex [56] and thus easy
to optimize. Given the above, the initial softmax weights are sampled by a normal

distribution with zero mean and 0.1 variance.

Lastly, since most of the variability in the model comes from the multiplicative terms

(weights), biases are usually just initialized to zeros.
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Parameter Dimension Initialization Regularized
wi, wi wih wiy 250 x 64 N(0, \/ 1) True
wil wih wid wib 64x 64 N(O,/525) True
wi, wd w wk 64x32  N(0,\/5125) True
wi wid wil o wi 32x32  N(0,\/525) True
agA)v O‘EA)’ ang)> CYS;A), aEA) 64 x 1 1 True
§. 8, g, By, gl 64 % 1 0 False
ol ol Q) o) ol 321 X True
.87, 80, B, Y 32 % 1 0 False
W softmaz 32 x 2 N(0,0.01) True
bso ftma 1x2 0 False

Trainable Parameters = 93,698

TABLE 4.1: Parameter Size & Initialization

All trainable parameters, along with their dimensions, initialization method and reg-

ularization. (A) indicates the first LSTM and (B) the second one. We assume that

the number of features is 250, while it may slightly vary from model to model since we
randomized the procedure.

4.9 Training the model

4.9.1 Stochastic Gradient Descent

Neural networks are trained using gradient descent methods. Gradients are computed
for every trainable parameter 6 by the derivative of the loss function £, 4.24 with respect
to . Then the parameters are updated using a magnitude (learning rate) n. Classic

gradient descent is defined in 4.30.

o) — g(t) _ g0 (4.30)
0 L R OL(f(xi56),y)
WZ 56 (4.31)

Where D denotes the training set, g, is the average gradient computed over training set

D and f(-) is the neural network function.

Using the average gradient of the training set can be computationally expensive and may

cause large steps on the loss surface, missing the global minima. Stochastic Gradient
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Descent (SGD) is a variant of gradient descent, in which, instead of the true gradient, the
expected gradient is used. True gradient means that the gradient is computed using the
entire dataset, while the expectation of the gradient is computed using a sample (mini-
batch) of the training set. Thus, we can define the expected gradient for a mini-batch
B as:

1 Z? K]
’B|Z (233 6), y:) ,BCD (4.32)

Using the expected gradient has been shown to be not only computationally efficient,
but also faster in terms of convergence. For simplicity, from now on, using the term
"gradient” we mean the gradient computed over a mini-batch B (denoted as dj in

previous sections).

For the purpose of this thesis, all models are trained using a mini-batch of 32, which is
approximately, % of the training set size. This is also suggested in Bengio 2012 [57],
as it is usually large enough to take advantage of the computational speed-up of matrix

multiplications.

Although SGD is straight-forward and efficient, large networks with thousands of pa-
rameters are not easy to train. The reason is that the loss surface is usually non-convex

and lies in a very high dimensional space.

4.9.2 Momentum and Adaptive Learning methods

Using momentum [58] ensures smoother training by averaging out the individual gradi-
ents of every time-step t. Momentum methods use the velocity of the gradient instead of

its actual position. Thus, given the momentum parameter m, the update rule becomes:

9D — 9(t) _ pgt=1) 4 pg® (4.33)

Adaptive learning methods are also widely used when training large networks. The idea
behind adaptive learning is that every trainable parameter should have its own learning
rate. It is natural that parameters in different layers may require more or less steep
updates than other ones. Thus, every parameter starts with an initial learning 7, that
evolves according to the optimization process. Hinton suggests in [59] a method for
evolving the individual learning rates. If the sign of the gradient for parameter 6, is
the same for two consecutive training iterations, the gradient gy gets boosted by a small

addition, otherwise, its gets a small multiplicative decrease. This method ensures that
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if the gradient starts bouncing in the loss surface (opposite signs), the learning rate will

decrease fast, and the algorithm will start converging.

4.9.3 Root Mean Square Propagation (RMSProp)

The training algorithm used in this research is the RMSProp [59] with momentum.
RMSProp works with adaptive learning, by maintaining a moving average of the square
of the gradient for each parameter, which is used to normalize the gradients. For a
decay rate d, the update rule for the Moving Average of the Squared Gradient (MASG)

is defined as:

MASG® = d MASG®Y + (1 — d)(g®)? (4.34)

Now using also a momentum of m and learning rate 7, we can define the update rule

for parameters @ as:

g®

o) — 9 _ pg(t=1) | p
MASG® + ¢

(4.35)

Where € is a small positive value to avoid division by zero, set to 10~8. The rest of the
parameters of the RMSProp were set by means of trial-and-error. We used an initial

learning rate of n = 0.001, a decay rate d = 0.9, a momentum of m = 0.9.

4.9.4 Gradient Clipping

As discussed in Section 4.2, although the LSTM solves the problem of the vanishing
gradient, it does not address the issue of the exploding gradient. The problem of the
exploding gradient arises in the back-propagation through time, when sequential error
signals from the state derivatives are much greater than 1. Accordingly, their product
creates a large gradient that can potentially lead to unstable training. The solution for

this problem is to define a threshold g4, above which, all gradients are reduced to it.

gmaz 9" > Gmas
g =
t) (t)
9 99 gmas
Although, by observing the training process, we found that gradients were rarely greater

than 1, we set a max gradient g, = 5, to ensure stable training.
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4.10 Performance evaluation

4.10.1 The Area Under the Curve (AUC)

Evaluation of the performance of each model is done by the Area Under the Curve (AUC)
score. AUC is calculated, as the area defined by the Receiver Operating Characteristic
(ROC). The ROC curve is obtained by evaluating the True Positive Rate (TPR) and
False Positive Rate (FPR) at different decision thresholds.

In a binary classification scheme, the TPR (or sensitivity) 4.36 is calculated as the
fraction of true positives to ground truth positives. Accordingly, FPR (or fall-out) 4.37
is calculated as the fraction of false positives to ground truth negatives. These can be

visualized in the confusion matrix in Figure 4.6, given a threshold t = ty.

TP,
TPR, — — 10 4.36
RtO TPtO +FNtO ( )
FP,
FPR, = —— " 4.37
Bto FP,, + TN, (4.37)
Ground truth
Buy Sell
S True Positive False Positive
N
Q
=
aY)
g
IS
&
>
@ False Negative True Negative

FIGURE 4.6: Confusion Matrix

Using the probabilities that were output by the softmax layer in our model, and given

a threshold parameter t, we can define TPR and FPR as followed.

1
TPR(t) = /t (@) (4.38)
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1
FPR(t) = /1t folw)dz (4.39)

Where fi(x) and fo(x) are the probability density functions of z if it belongs to class
‘Buy’, or ’Sell” accordingly. The density functions and their intersections, as defined by

the varying threshold ¢, can be observed in the example of Figure 4.7.

FIGURE 4.7: False Positive Rate and True Positive Rate

By varying threshold ¢ over the range [0, 1], the FPR is the ratio of the area covered by
FP to the area defined by fo(z). On the other hand, the TPR is the ratio of the area
covered by TP to the area defined by f;(z). Note that the grey area is part of both FP
and TP. Also, it has to be noted that this example and not something we derived from
our methods. In our case, given its difficulty, the density functions are most probably
blended with one another and are not clearly separable, like those in this example.

By plotting the T PR against F'PR, for the varying decision threshold ¢, the ROC curve
is obtained and the AUC score is the area defined by this curve. This translates to

following integration.

AUC = / PPR()(_FPR (1)t (4.40)
0

Where the prime indicates the reversal of the integration limits. The AUC score is the
probability that a model ranks a random chosen ”Buy” example, higher than a random
chosen ”Sell” example. Being a probability, the AUC score is in the range of [0, 1], with

a probability of 0.5 indicating a random model.
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4.10.2 Motivation for using the AUC score

AUC is arguably the most used evaluation metric when it comes to classification tasks.
One of its advantages over other evaluation metrics is its robustness to class imbalances.
Class imbalance, in a classification task, is the problem of one class being the majority of
the total population. As previously discussed, in high-frequency market classification,
the positive class is systematically lower than 50% of total instances, usually around
46%. Evaluating performance using plain accuracy 4.41 would not make clear what
the actual predictive power of the model is, since it assumes that all miss-classification
errors are the same. An accuracy score of 54% could just be that the model predicts
the majority of instances as ”Sell”, which obviously does not add any real value, and

furthermore cannot be used as a means of model comparison.

TP, + TNy,
TP, + FPy + TNy, + FN,,

Accuracyy, = (4.41)
Other measures, like Sensitivity 4.36, or Precision 4.42, or their harmonic mean, the
fl-score 4.43, may be used in order to tackle class imbalance and provide a better view
on the predictive power of a model. Yet again, there are some shortcomings. Firstly, the
True Negatives(TN) are left out of the equation. Secondly, these measures still evaluate

performance over one decision threshold t = #.

TP,

PTGCiSiOTLtO = W
to to

(4.42)

fly = —— . (4.43)

Sensitivityto Precisionto

The AUC score is robust to both class imbalance and decision thresholds, and thus,
it is an unbiased performance metric, that can be used to capture at full the perfor-
mance of our models. Furthermore, in high difficulty classification tasks, like ours, it is
a benchmark by itself. The weak form of market efficiency suggests that past market
information (like technical indicators) hold no predictability power over future events.
According to this statement, predictions of a classifier should approach random perfor-
mance, meaning an AUC score of 0.5. Thus, any classifier that provides AUC scores

greater than 0.5, would be evidence against the EMH.
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4.11 Ensemble

The final stage of our predictive framework involves the use of an ensemble algorithm
to combine the predictions of 12 LSTMs, for every predictive period. A simple way to
implement an ensemble is to take the average of the individual predictions. Thus for

stock S and for instance ¢, the prediction of the ensemble is

12
1
pg?semble . 72 Z model (444)
=1
where pg"fdel ) is the probability for class 'Buy’ as was output by the softmax layer of

model;. For the rest of the thesis, we are referring to this model, as Equally Weighted

Ensemble.

Except for an equally weighted ensemble, we considered two more methods. The idea
is to take into account the performance of each model in the previous n observations.
Thus, the weight of each model is proportional to its AUC score 4.40 in the past n

observations.

(model )
2 AUO (modely;)

(ensemble)
Ps,t =2

—— Dy (4.45)
=1 k: 1AUC( elk)

where AUC’gZOdeli) indicates the AUC score of model; in period (t —n —1,¢t —1). This
type of ensemble is refereed to as Performance Weighted Ensemble for the rest of the

thesis.

To identify whether predictability comes from a single good model, or from their collec-
tive interactions, we furthermore considered an ensemble, which takes into account only

the best model and will be referred to as Best Model Ensemble.

pg?semble) = argmarauvcs, Psi (4.46)

Our intuition is that each one of the 12 models for has identified and learned certain
patterns from the training set. Whether these patterns can be found also in the test set,
or they have disappeared, we are not in a position to now. But we know that if they
emerge, they are going to be preserved for some time t. Thus, the ensemble can work in
an online way and learn to update the weighting of the models according to their ability

to identify some good patterns in the last n instances.
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As a look-back window for validating the models, we chose n = 390, which corresponds
to one week of data. Given that predictions are applied for 2 weeks, 1 week provides
enough time to validate and identify the appropriate weights, while the remaining week

can be used for forecasting.

4.12 Benchmarks

To provide a benchmark for the performance of the ensemble, we used two additional
methods, the Lasso and the Ridge classifiers. They essential are regularized logistic
regressions, with ¢1 weight decay applied for Lasso and ¢2 applied for the Ridge. The
selection of these methods for benchmarking, stems from the fact that they are simple
(compared to LSTMs) and furthermore they output probabilities that can be used to
calculate the AUC scores. The unregularized logistic regression can be defined in the

following equation.

1

p(E) = T g (4.47)

Where x is the feature vector for one instance, w is a vector of weights and b is a bias
term. By also including regularization of A, the function for training the model are the

following.

n
w*, 0" = argming p Z log(e_iniTw+b + 1)+ Lreg (4.48)
i=1

Where n is the number of training examples and y; is the vector of target values for
example 7. Finally, the regularization loss is L,¢q = A||w]||; for Lasso and L,¢q = A||w]|2
for Ridge.

4.13 Implementation

All required data processing was done in Python 3, using NumPy and pandas. NumPy
is a package containing high-level mathematical functions that can operate on multi-
dimensional arrays, while pandas is build on top of it and provides several tools for data
analysis and visualization. Setting up, as well as training the LSTM models was done
in TensorFlow. TensorFlow is a low-level, symbolic math and deep learning library,

developed by Google, that provides excellent functionality for training and monitoring
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neural networks. It essentially works by creating a computational graph for each of
the models, allowing for efficient automatic differentiation during training. Finally, the
Lasso and Ridge logistic regression models were trained using the scikit-learn package,
which provides high-level machine learning functions. Other minor packages used in this
research are matplotlib and seaborn for plotting figures and pandas-market-calendars for
creating customized NYSE and NASDAQ calendars.

The hardware used for the realization of this research was a personal machine with a
2-core 2.3GHz CPU and 8GB RAM.
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Results

5.1 LSTM ensembles

Each model is trained for a total of 15 epochs. One epoch is equal to the number of
training iterations need for the algorithm to hypothetically ! run over all the instances

of the trains set. Given a mini-batch B and a training set D, one epoch is equal to

|D| _ 1560
[B] — 32

~ 49. Consequently, 15 epoch amounts to 15 - 49 = 735 training iterations.

12 models were trained for each period and for each stock. The trained models were used
for inference on the testing periods, outputting the probabilities of the softmax layer.
Thus, at each period we have at our disposal the probabilities for each class, according
to 12 different models. Using these probabilities, we produced three different type of
ensembles. The first two are the Equally Weighted Ensemble and the Performance
Weighted Ensemble, as described in 4.11. To demonstrate that the predictability comes
from the collective presence of the models, we also produced an ensemble, in which, for
predicting each observation, we considered only the best model (according to the AUC
of the past 390 observations). In the following figure, we present a visualization of the

AUC scores for stock NEE, as obtained by the Performance Weighted Ensemble.

Leach mini-batch is constructed via a randomized process with replacement

43
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FIGURE 5.1: Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) curve for 21 periods for stock NEE. Each
line is obtained by plotting the False Positive Rate(FPR) against the True Positive
Rate(TPR) for a varying decision threshold. The AUC score for each curve indicates
the area that covers. The identity line stands for the random classifier (area of 0.5).
The majority of the lines remain consistently above the identity line and suggest a good
classifier. Additionally, in most models, the area defined by the ROC curve increases
in middle thresholds (0.2 - 0.8), suggesting that the optimal decision threshold exists
in that area.

The combined AUC scores of the three ensemble methods can be found in Table 5.1.
The t-statistic in the table indicate that all our results (AUC score) are significantly
greater than an AUC score of 0.50, or in other words better than random. This suggest
evidence against the weak form of efficiency in the US markets, since we should not
be able to make better than random predictions using past market information. The
results in Table 5.1 demonstrate that using the AUC score of past observations to weight
the models in the ensemble, can produce a better performing model. Additionally, this
provides evidence on the existence of patterns in the high-frequency US stock market

that are not only durable, but also discoverable.
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Average AUC scores for the 22 stocks used in the research. The t-statistic is used to
measure if each AUC score is significantly better than random (0.50). In bold is the
best model for the particular stock. Nearly all AUC scores for the Equally Weighted
and Performance Weighted ensembles are significantly better than random at a = 0.01.
One asterisk indicates significance only at a = 0.1, double asterisk indicates significance
at o = 0.05, while the triple one indicates significance at & = 0.01. The ensemble, which
is comprised from only the best model at each time, produced inferior results than the

other two, in both actual absolute terms and significance.

TABLE 5.1: AUC scores for the LSTM ensembles

Equally Best Performance
Weighted Model Weighted
Stock Ensemble Ensemble Ensemble
BA 0.5153 ( 4.13 )*** 0.5017 ( 0.30 ) 0.5224 ( 4.24 )***
F 0.5232 (1 4.70 )*** 0.5179 ( 2.95 )*** 0.5355 ( 5.86 )***
DHR  0.5144 ( 2.77 )*** 0.5141 ( 2.14 )**  0.5231 ( 3.52 )***
KO 0.5173 (1 4.20 )*** 0.5138 ( 2.41 )**  0.5251 ( 3.22 )***
MO 0.5110 ( 2.61 )*** 0.5042 ( 0.71 ) 0.5201 ( 3.08 )***
MAR  0.5251 ( 7.17 )*** 0.5346 ( 4.29 )*** 0.5346 ( 5.30 )***
AMT  0.5086 ( 1.72 )**  0.4959 ( -0.53 ) 0.5132 ( 1.99 )**
MCD  0.5223 ( 3.68 )*** 0.5222 ( 3.52 )*** 0.5248 ( 3.62 )***
DIS 0.5150 ( 5.03 )*** 0.5185 ( 2.72 )*** 0.5196 ( 3.09 )***
GE 0.5179 (1 3.51 )*** 0.5129 ( 2.09 )**  0.5251 ( 3.93 )***
EOG  0.5155 (1 3.48 )*** 0.5082 ( 1.15 ) 0.5193 ( 2.96 )***
GS 0.5149 ( 3.28 )*** 0.5194 ( 3.28 )*** 0.5362 ( 5.38 )***
MET  0.5178 ( 3.33 )*** 0.5090 ( 1.30 ) 0.5218 ( 3.47 )***
BK 0.5173 (1 4.78 )*** 0.5102 ( 1.76 )**  0.5254 ( 3.92 )***
AMGN 0.5161 ( 2.88 )*** (0.5094 ( 2.06 )**  0.5224 ( 2.91 )***
ABT  0.5057 ( 1.55 )* 0.5111 ( 2.07 )**  0.5190 ( 3.12 )***
AET  0.5133 (12.95 )*** 0.5255 ( 5.40 )*** 0.5263 ( 3.25 )***
NEE  0.5207 ( 4.73 )*** 0.5103 ( 1.47 )* 0.5304 ( 4.76 )***
EXC  0.5102 ( 2.23 )**  0.4920 ( -1.26 ) 0.5166 ( 2.19 )**
IBM  0.5112 ( 2.47 )**  0.5064 ( 1.05) 0.5167 ( 2.43 )**
ATVI  0.5106 ( 3.39 )*** 0.5066 ( 0.94 ) 0.5141 ( 2.40 )**
NVDA 0.5186 ( 4.27 )*** 0.5065 ( 1.17 ) 0.5242 ( 4.45 )***

5.2 Lasso and Ridge Logistic Regressions

To provide another benchmark for the Performance Weighted Ensemble, other than the

random guessing, the Lasso logistic regression and the Ridge logistic regression are used.
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A weight decay of A = 0.1 was applied for the regularization. We employ both of them
on the same periods, that the ensemble was tested. The AUC scores for each stock
using the Lasso and Ridge logistic regression can be observed in Table 5.2. The two
models produce similar results to one another, which are also significantly better than
random, as indicated by the t-statistic. Since, both of them are fairly simplistic models,
compared to the LSTM, we may infer that an important part of the predictability comes

from the features used in this research.
TABLE 5.2: AUC scores for Lasso and Ridge Logistic Regressions

Average AUC performance for the 22 stocks by employing Lasso and Ridge logistic
regressions with a weight decay of A = 0.1. In bold is the best model for the particular
stock. The t-statistic in the parenthesis indicates whether the result is significantly
better than random (AUC = 0.5). One asterisk indicates significance only at o =
0.1, double asterisk indicates significance at a = 0.05, while the triple one indicates
significance at @« = 0.01. The majority of the scores are significant at o« = 0.05 or
« = 0.01. Furthermore we can say that the two methods produce comparable resutls.

Stock Lasso LR Ridge LR
BA 0.5176 ( 3.27 )***  0.5182 ( 3.30 )***
F 0.5198 ( 2.90 )***  0.5216 ( 3.04 )***
DHR  0.5176 ( 1.99 )**  0.5167 ( 1.88 )**
KO 0.5236 ( 4.48 )*** (.5228 ( 3.77 )***
MO 0.5190 ( 2.16 )**  0.5142 ( 1.65 )*
MAR  0.5159 ( 2.14 )** 0.5171 ( 2.09 )**
AMT  0.5097 (142 )**  0.5087 ( 1.20 )
MCD  0.5127 ( 2.63 )***  0.5150 ( 2.99 )***
DIS 0.5104 ( 1.91 )** 0.5126 ( 2.24 )**
GE 0.5155 ( 1.83 )** 0.5161 ( 1.93 )**
EOG  0.5069 ( 1.07) 0.5070 ( 1.17)
GS 0.5270 ( 3.64 )*** 0.5236 ( 3.39 )***
MET  0.5168 ( 3.03 )***  0.5197 ( 3.58 )***
BK 0.5157 (1 2.62 )***  0.5199 ( 2.85 )***
AMGN 0.5158 (1 2.49 )**  0.5132 ( 2.30 )**
ABT  0.5099 ( 2.07 )** 0.5117 ( 2.40 )**
AET  0.5104 ( 1.44 )* 0.5086 ( 1.19)
NEE  0.5273 ( 3.41 )***  0.5276 ( 3.64 )***
EXC  0.5239 ( 3.45 )*** 0.5221 ( 3.07 )***
IBM  0.5095 ( 1.36 )* 0.5106 ( 1.59 )*
ATVI  0.5088 ( 1.41 )* 0.5056 ( 1.00)
NVDA 0.5123 ( 2.34 )** 0.5138 ( 2.73 )***
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5.3 Performance Weighted Ensemble vs Benchmarks

In the following table, we provide a comparison in terms of AUC score, of the Perfor-

mance Weighted Ensemble, against the other methods.

Ensemble, since results were not that good.

The Performance Weighted Ensemble produces consistently better than the other meth-
ods, with the only exception being for stock EXC, where it underperformed with respect
to Lasso and Ridge classifiers. In bold is the best model for the particular stock and
the values in parenthesis indicate the paired t-test between each method and the Per-
formance Weighted Ensemble for 21 periods. One asterisk indicates significance only at
a = 0.1, double asterisk indicates significance at a = 0.05, while the triple one indicates

significance at o = 0.01.

TABLE 5.3: Performance Weighted Ensemble against the other methods

We excluded the Best Model

Equally Performance

Weighted Weighted

Stock Lasso LR Ridge LR Ensemble Ensemble
BA 0.5176 ( 0.63 ) 0.5182 ( 0.54 )  0.5153 ( 1.09 ) 0.5224
F 0.5198 ( 1.72 )** 0.5216 ( 1.49 )* 0.5232 ( 1.57 )* 0.5355
DHR  0.5176 ( 0.50 ) 0.5167 ( 0.58 )  0.5144 ( 1.03) 0.5231
KO 0.5236 ( 0.15) 0.5228 (0.23) 0.5173 (0.88) 0.5251
MO 0.5190 ( 0.09 ) 0.5142 ( 0.55)  0.5110 ( 1.17) 0.5201
MAR  0.5159 ( 1.89 )** 0.5171 ( 1.67 )* 0.5251 ( 1.28) 0.5346
AMT  0.5097 ( 0.37) 0.5087 (1 0.46 )  0.5086 ( 0.56 ) 0.5132
MCD  0.5127 ( 1.45)* 0.5150 ( 1.15)  0.5223 ( 0.27 ) 0.5248
DIS 0.5104 ( 1.10) 0.5126 ( 0.83 )  0.5150 ( 0.65 ) 0.5196
GE 0.5155 (1 0.90 ) 0.5161 ( 0.85) 0.5179 ( 0.87) 0.5251
EOG  0.5069 ( 1.36 )*  0.5070 ( 1.40 )* 0.5155 ( 0.48 ) 0.5193
GS 0.5270 ( 0.91) 0.5236 ( 1.29 )  0.5149 ( 2.63 )*** 0.5362
MET  0.5168 ( 0.59 ) 0.5197 (0.25) 0.5178 ( 0.48) 0.5218
BK 0.5157 ( 1.09) 0.5199 ( 0.57 )  0.5173 ( 1.09 ) 0.5254
AMGN 0.5158 ( 0.67) 0.5132 (0.96 ) 0.5161 ( 0.67 ) 0.5224
ABT  0.5099 ( 1.18) 0.5117 (0.93 )  0.5057 ( 1.86 )** 0.5190
AET  0.5104 ( 1.47)*  0.5086 ( 1.63 )* 0.5133 ( 1.41 )* 0.5263
NEE  0.5273 ( 0.30) 0.5276 (1 0.28 )  0.5207 ( 1.24) 0.5304
EXC 0.5239 (-0.71) 0.5221 (-0.52 ) 0.5102 ( 0.72) 0.5166
IBM  0.5095 ( 0.74) 0.5106 ( 0.64 )  0.5112 ( 0.67 ) 0.5167
ATVI  0.5088 ( 0.62 ) 0.5056 ( 1.04 )  0.5106 ( 0.52) 0.5141
NVDA 0.5123 ( 1.58 )*  0.5138 ( 1.39 )* 0.5186 ( 0.81 ) 0.5242
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With the exception of one stock (EXC), the Performance Weighted Ensemble, produces
better results than the other methods. Some of them are also significant in o = 0.1 or

lower thresholds.

Finally, we wanted to test the hypothesis that all the information contained in Lasso and
Ridge classifiers is also present in the Performance Weighted Ensemble. Since, both the
logistic regression models are fairly simple, we wanted to examine the possibility that
the Performance Weighted Ensemble lost some basic information due to its advanced
complexity. To do so, we included the Lasso and Ridge classifiers in the ensemble and
tested for improvement in the produced AUC scores. The results with the inclusion of

the extra models, along with the paired t-test can be be found in Table 5.4.
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TABLE 5.4: Inclusion of Lasso and Ridge in the ensemble

AUC scores of the Performance Weighted Ensemble containing only LSTMs and the the
Performance Weighted Ensemble containing LSTMs and the Lasso and Ridge logistic
classifiers. In bold is the best model for the particular stock. We can only observe minor
differences between the two test models and all of them are insignificant at o = 0.25.

Performance Weighted Performance Weighted Paired

Stock Ensemble Ensemble +Lasso + Ridge t-test
BA 0.5224 0.5237 0.18
F 0.5355 0.5354 0.00
DHR 0.5231 0.5242 0.12
KO 0.5251 0.5254 0.03
MO 0.5201 0.5203 0.02
MAR 0.5346 0.5355 0.10
AMT 0.5132 0.5132 0.00
MCD 0.5248 0.5252 0.04
DIS 0.5196 0.5197 0.02
GE 0.5251 0.5254 0.03
EOG 0.5193 0.5191 -0.03
GS 0.5362 0.5368 0.07
MET 0.5218 0.5226 0.10
BK 0.5254 0.5254 0.01
AMGN 0.5224 0.5224 -0.01
ABT 0.5190 0.5195 0.06
AET 0.5263 0.5269 0.05
NEE 0.5304 0.5310 0.07
EXC 0.5166 0.5191 0.23
IBM 0.5167 0.5168 0.01
ATVI 0.5141 0.5145 0.05
NVDA 0.5242 0.5236 -0.07

The inclusion produced minor changes in the AUC scores of the Performance Weighted
Ensemble, which are also insignificant. As expected, the largest change was for stock
EXC, that both Lasso and Ridge had outperformed the Performance Weighted Ensemble.
Considering the results of Table 5.4, we can conclude that no real value can be added by
including the Lasso and Ridge classifiers in the ensemble, and thus all the information

is already incorporated in the Performance Weighted Ensemble.
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Conclusion

In this thesis, we proposed a framework for predictions in high-frequency, stock mar-
ket settings. Our framework is based on an ensemble model that combines multiple
Long Short-term Memory networks through a robust, performance-evaluated, weighting

method.

We conducted a large-scale study, by doing data analysis and processing on 44 US large
cap stocks, which can be translated to 30GB in raw data or 420 million in number
of trades. The raw trade data of every stock were aggregated into 5-minute intervals,
which were used to create a large number of technical indicators on different time frames.
From the aggregated stock data, we further created sector datasets that were used in
the predictive modeling. The data were used to train a total of 5544 LSTM networks

that were merged to create 462 ensemble models.

The LSTM networks used in this research included new, state-of-art deep learning tech-
niques, such as dropout and layer normalization. Additionally, a large part of Chapter

4 can serve as an extensive manual for applying deep and recurrent models.

By testing the predictive power of the proposed ensemble on 22 stocks, it was proved
to be an upgrade on regular ensemble weighting methods, like an equally weighted one
or one that considers only the best individual model. It furthermore outperformed two
simpler models, the Lasso and Ridge logistic regressors. Additionally, by showing that
incorporating the simpler models into the ensemble, no significant gain was achieved,

we proved that the ensemble dominates them in terms of information.

Finally, all of the trained models were found to be statistically better than random, for
the majority of the tested stocks, thus suggesting evidence against the weak form of

market efficiency.
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Chapter 7

Future Research

Research in Artificial Intelligence(AI) methods is growing rapidly, and most probably,
along with Blockchain technologies, will shape the world of Business & Finance in the
forthcoming future. Although AI methods, like deep neural networks, are incredibly
powerful, with estimates saying that they will reach the computational capacity of a
human brain by the year 2025, they lack in terms of efficiency. The issue at hand also
applies to this particular research. In spite the fact that our proposed model outperforms
the set benchmarks, it is much more computationally expensive than them. The training
of the ensemble of a single stock required approximately 150 minutes, while the training
of a Lasso or Ridge logistic regression need only some minutes. With this in mind, we
believe that research should be aimed at maximizing the ratio of predictive accuracy to

energy, instead of predictive accuracy alone.

This is also apparent when it comes to high-frequency trading. One should not be able
to make just good predictions, but also fast predictions. We believe that our method
can be further optimized by tuning the models. Unfortunately, our research was limited
in terms of hardware and thus most of the hyperparameters were chosen by means of
trial-and-error experiments or heuristic rules, found in the literature. Correct tuning
can be carried out by setting up a grid search through candidate values, or even by an

evolutionary algorithm.

The possibility of also including news sentiment data in this framework should also be
researched. Although, when it comes to high-frequency data, news sentiment is usually
too sparse to be modeled efficiently, it could potentially add more value to the whole

framework.
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Finally, we would like to point out that this research was aimed at achieving a general
predictability, by estimating class probabilities on a varying decision threshold. Prof-
itability of this framework, and in general profitability in high-frequency trading, should
also be researched. This can be accomplished by optimizing the decision threshold, for

which an optimal value, was shown to exist between 0.2 and 0.8.
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Appendix

TABLE A.1: Stock Universe

Stocks used for this research , along with the sector they belong, their primary com-

petitor and the exchange that they are traded at.

Stock Name (Symbol) Sector Competitor Name (Symbol) Exchange

The Boeing Company (BA) Capital Goods United Technologies Corporation (UTX) NYSE

Ford Motor Company (F) Capital Goods General Motors Company (GM) NYSE

Danaher Corporation (DHR) Capital Goods Thermo Fisher Scientific Inc (TMO) NYSE

The Coca-Cola Company (KO) Consumer Non-Durables Pepsico, Inc. (PEP) NYSE

Altria Group (MO) Consumer Non-Durables Philip Morris International Inc. (PM) NYSE
Marriott International (MAR) Consumer Services Las Vegas Sands Corp. (LVS) NASDAQ

American Tower Corporation, REIT (AMT) Consumer Services Simon Property Group, Inc. (SPG) NYSE
McDonalds Corporation (MCD) Consumer Services Starbucks Corporation (SBUX) NASDAQ

The Walt Disney Company (DIS) Consumer Services Time Warner Inc. (TWX) NYSE

General Electric Company (GE) Energy Emerson Electric Company (EMR) NYSE

EOG Resources, Inc. (EOG) Energy Occidental Petroleum Corporation (OXY) NYSE

The Goldman Sachs Group, Inc. (GS) Finance Morgan Stanley (MS) NYSE

MetLife, Inc. (MET) Finance Prudential Financial, Inc. (PRU) NYSE

The Bank Of New York Mellon Corporation (BK) Finance U.S. Bancorp (USB) NYSE
Amgen Inc. (AMGN) Health Care Gilead Sciences, Inc. (GILD) NASDAQ

Abbott Laboratories (ABT) Health Care Merck & Company, Inc. (MRK) NYSE

Aetna Inc. (AET) Health Care Cigna Corporation (CI) NYSE

NextEra Energy, Inc. (NEE) Public Utilities Dominion Energy, Inc. (D) NYSE

Exelon Corporation (EXC) Public Utilities Duke Energy Corporation (DUK) NYSE

International Business Machines Corporation (IBM) Technology HP Inc. (HPQ) NYSE
Activision Blizzard, Inc (ATVI) Technology Adobe, Inc (ADBE) NASDAQ
NVIDIA Corporation (NVDA) Technology Intel Corporation (INTC) NASDAQ
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TABLE A.2: Trade conditions

Summary of possible trade conditions and their contribution to Open, Close, Low, High
and trading Volume. Most of the the conditions do not contribute to the open/close
prices, which are of interest. Source: [60], p.118

CONSOLIDATED PARTICIPANT P
COND
CODE SALE CONDITION LastT  TC open  rast  FSH uppate
VOLUME
Blank No Sale Condition required within the Category it N/A

appears (Long Trade format only)

REGULAR TRADE
(Indicates a trade with no associated conditions)

®
i
5

#4 YES YES YES

B AVERAGE PRICE TRADE NO NO NO NO NO YES
C  CASH TRADE (Same Day Clearing) NO NO NO NO  NO YES
E AUTOMATIC EXECUTION YES YES #4 YES YES YES
F INTEEMARKET SWEEP OFRDER YES YES #4 YES YES WES
H PRICE VARIATION TRADE NO NO NO NO NO YES
I ODD LOT TRADE NO NO NO NO NO YES
x mIzaTSEomE s v W v s v
L  SOLD LAST (Late Reporting) #3 YES #4  YES  YES YES
M MAREKET CENTER OFFICIAL CLOSE NO NO NO YES YES NO
N  NEXT DAY TRADE (Next Day Clearing) NO NO NO  NO NO YES
o] MARKET CENTER. OPENING TRADE #1 YES YES #2 ED YES
P PRIOR. REFERENCE PRICE #1 YES #4 #2 YES YES
Q MARKET CENTER OFFICIAL OPEN NO NO YES NO YES NO
R SELLER NO NO NO NO NO YES
T EXTENDED HOURS TRADE NO NO NO NO NO YES
u EXTENDED HOURS SOLD (Out of Sequence) NO NO NO NO NO YES
v CONTINGENT TRADE NO NO NO NO NO YES
X CROSS5 TRADE YES YES #4 YES YES YES
Z SOLD (Out of Sequence) #2 YES #4 #2 YES YES
4 DERIVATIVELY PRICED #1 YES #4 #2 YES YES
5 MAREKET CENTER REOPENING TRADE YES YES #4 YES YES YES
6 MARKET CENTER. CLOSING TRADE YES YES #4 YES YES YES
7 QUALIFIED CONTINGENT TRADE NO NO NO NO NO YES
8 RESERVED NO NO NO NO NO TBED
9 CORRECTED CONSOLIDATED CLOSE PRICE YES VES NO NO NO NO

as per LISTING MARKET
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TABLE A.3: Basic features

Features extracted from the raw trade data. Formulas indicate how these features are
extracted from the split into 5-minute intervals datasets. NN is the number of trades
that took place in this interval, P; is the price of trade at moment ¢, .S; is the size of
the trade and AP denotes the price differences vector. I stands for indicator function.

Features Formula
Open (Popen) P
Close (Priose) Py
Low (Piow) min(P)
High (Phign) maz(P)
Volume Weighted Average Price (Pywap) Ziv P;S;/ Efv S;
Mean Price Difference (MeanPriceD) (P —Py)/(N—1)
Max Price Difference (Maz PriceD) max(AP)
Standard Deviation of Price Differences (StdPriceD) \/ﬁ Efi_ll(APi — MeanPriceD)?
Total number of Trades N
Number of Market Sweep Trades Zf\i 1 Leond=F
Max Trade Size maz(S)
Mean Trade Size Zfil Si/N
Volume Ziv Si
Positive Volume (Volume™) le\il Iap,>0Si
Negative Volume (Volume™) Zfil Iap, <0S;
Neutral Volume (Volume®) Zf\il Iap,—0S;

TABLE A.4: Split history

Symbol Date Split ratio
EOG 01/04/2014 2 for 1
OXY 01/12/2014 1042 for 1000
SPG 29/05/2014 1063 for 1000
TWX  09/06/2014 1043 for 1000
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TABLE A.5: Advanced features

Here we present a summary of all the features in each dataset and how many different
versions of them are included on stock level and on sector/index level.

Feature Versions Versions
in stock in sector/index
Percentage change in Price 7 6
Price Difference (on raw level) 3 0
Std of Returns (cross sectionally) 0 1
Volume 4 3
Accumulation/Distribution Index 6 6
True Range 1 1
Probability and Conditional Probability 10 10
Rolling Regression 4 1
Sharpe Ratio

Price Disagreement
Price Polarity 6 6
Bollinger Bands 10 10
Stochastic Oscillator ) )
Relative Strength Index 5 5
Commodity Channel Index 5 5
Average Directional Index 5 5
Double and Triple Exponentially Smoothed Returns 5 5
Moving Average Convergence/Divergence 5 5
Money Flow Index 5 )
97 90
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—— tanh(x)
—— dtanh(x)/dx

0.00
-0.25
-0.50
-0.75

-1.00

FIGURE A.1: Tanh function and its derivative

Tanh has outputs in [—1,1] and strong gradients around zero. Neuron saturation may

happen if inputs z diverge significantly from it. For that reason we would optimally

have its input x to be centered zero. Layer normalization, as well as Xavier initialization
will ensure that.

1.0

—— sigmoid(x)
—— dsigmoid(x)/dx
0.8
0.6
0.4
0.2
0.0

FIGURE A.2: Sigmoid function and its derivative

The sigmoid function, with outputs in [0,1], has its strongest gradients around zero,

while neuron saturation may happen if inputs x diverge significantly from it. For that

reason we would optimally have its input x to be centered zero. Layer normalization,
as well as Xavier initialization will ensure that.
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A.1 Technical Indicators

A.1.1 Moving Averages

Many of the Technical Indicators used in this research involve the calculation of several
moving averages. Moving averages are used to smooth noisy time-series and highlight

short or long-term trends.

The Simple Moving Average SMA(x,n) is composed from the mean of the last n ob-

servations of time-series ;.

SMA(CL’t,TL) = % th—i (Al)
i=1

The Exponential Weighed Moving Average EWMA (z, o) is calculated by exponential

decreasing the weight of observations x; with respect to their distance from x;.
EWMA(xg, ) = axy + (1 — ) EWMA(x4—1, @) (A.2)

A.1.2 Sharpe Ratio

Sharpe ratio is measure that summarizes the trade-off between return and risk. Although
mostly used for evaluating investment strategies, it can also be used as a technical

indicator. Sharpe ratio is calculated for n = [6,12, 36, 78, 234].

(TP (1 + Rey1—i) — 1) — Ry
\/% S (Bi = 5 20 (T Reyig))?

Sharpe, = (A.3)

Where R, ¢ is the risk free rate.
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F1GURE A.3: Sharpe ratio for n = 234

A.1.3 Accumulation/Distribution Index (ADI)

ADI is a popular volume indicator, which is calculated as the cumulative sum of the

product of Close Location Value (CLV) and the trading volume.

Pclose,t - Bow,t) - (Phigh,t - Pclose,t)
Phigh,t - ]Dlow,t

CLV, = ( (A.4)

t
ADI, =Y CLV; Volume; (A.5)
=1
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FIGURE A.4: Accumulation/Distribution Index

A.1.4 Bollinger Bands (BB)

Bollinger Bands are used to construct volatility indicators by evaluating the distances
of current typical price to the previous n typical prices. For the purpose of this research
we are using d = 3 and n = [6, 12, 36, 78, 234].

Middle BBy = SMA(Prypical t, 1) (A.6)
1« _
o= Z Prypicalt—i — Middle BB, (A7)
Upper BB = MiddleBB; + d o (A.8)
Lower BB = MiddleBB; —d o (A.9)

Peoset — Lower BBy
Upper BBy — Lower BB,

Yo = (A.10)
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U BB, — L BB
Bandwithy = ppeTMi;dleBOger ¢ (A.11)
t
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FIGURE A.5: Bandwith for n = 36

A.1.5 Stochastic Oscillator

The Stochastic Oscillator is a momentum indicator that aims to predict the oscillations

of the price by taking into account the price range during the last n observations.

Pclose t Ln
K= —DWWW— A.12
"~ H,— L, (A-12)
Where Ly, = min(Piowt—n, s Plowt) and Hy, = min(Phight—n, - Phigh,t)-
Finally, the Stochastic Oscillator is a Simple Moving Average of length m.
StochOsciy = 100 SM A(Ky,m) (A.13)

The values used for this research are n = [6, 12,36, 78,234] and m = [3, 3, 2, 2, 2] accord-
ingly.
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FIGURE A.6: Stochastic Oscillator for n = 234

A.1.6 Relative Strength Index (RSI)

The Relative Strength Index is another momentum indicator that uses the velocity and
magnitude of price movements to identify if an asset is overbought or oversold. It ranges
from 0 to 100, with low values indicating that the asset is oversold, while high values

indicate that is overbought. RSI is calculate for n = [6,12, 36, 78, 234].

Pclose,t - Pclose,t—l ’Pclose,t > Pclose,t—l

0 7Pclose,t < Pclose,t—l

0 7Pclose,t > Pclose,t—l
Pclose,t - Pclose,t—l 7Pclose,t < Pclose,t—l

100

| & EWMA(UL1/n)
+ EWMA(D:1/n)

RSI; = 100 — (A.14)
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F1GURE A.7: Relative Strength Index for n = 78

A.1.7 Commodity Channel Index (CCI)

The Commodity Channel Index functions similarly to the RSI, indicating whether an
asset is overbought or oversold. The main difference is that CCI operates on the typical
price. It ranges from -100 to 100, with small values hinting that the stock is oversold,

while large hint the opposite. The CCI is calculate for n = [6,12, 36, 78, 234].

1 Ptypical,t - SMA(Ptypical,ta n)

cCl; =
t 0.015 MAD(Ptypical,ta ’I’L)

(A.15)

Where M AD is the Mean Absolute Deviation, calculated as:

1< 1<
MAD(xi,n) = - g |zi—i — - E Tp—k| (A.16)
i=1 k=1



Appendiz 64

1000

800

600

400

200

-200

-400

-600

® AN o0 \O N
A© v A© i A ¥ A© ~ A© >
® ® ® ® ®

F1GURE A.8: Commodity Channel Index for n = 78

A.1.8 Average Directional Moving Index (ADX)

The Average Directional Moving Index is a combination of two other indicators, the
positive directional DI and the negative directional DI~, and it used a measure of
trend strength. The ADX is calculate for n = [6,12, 36, 78, 234].

UpMove; = Pright — Phigh,t—1 (A.17)

DownMove; = Powt—1 — Plow,t (A.18)

DM UpMove; ,UpMove; > DouwnMove; and UpMove; > 0
t =

0 ,otherwise

DownMove; , DownMove; > UpMove; and DownMovey > 0

0 , otherwise

EWMA(DM;,1/n)
SMA(T Ry, n)

DIF =100 (A.19)

EWMA(DM; ,1/n)
SMA(TR;, n)

DI; =100 (A.20)
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Where TR stands for True Range and is defined as

TRt - maw(Phigh,t - Plow,ta ’Phigh,t - Pclose,t—1|7 |Plow,t - Pclose,t—lD (A21)

Finally, ADX is defined as

ADX; =100 EWMA(M, 1/n) (A.22)
|DI; + DI} |
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FIGURE A.9: Average Directional Moving Index for n = 78

A.1.9 Double and Triple Exponentially Smoothed Returns

Both these indicators are calculate as the percentage change of the double DIX or triple
TRIX exponentially smoothed prices. DIX is calculated for n = 234, while TRIX for
n = [6,12, 36, 78].

EWMA(EW M A(Pagses, 1/n),1/n) — EWMA(EW MA(Pypens,1/n),1/n)

DIX; =
! EWMA(EW M A(Popen s, 1/n),1/n)

(A.23)
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F1GUrRE A.10: Triple Exponentially Smoothed Returns for n = 78

A.1.10 Moving Average Convergence-Divergence (MACD)

MACD is a technical indicator composed from 3 separate time-series, used for detec-

tion changes in the trend of a price, with respect to strength, momentum, duration

nd direction. First, the divergence of two FW M A on the typical price is measured
and then MACD is calculated as the difference of the divergence and EW M A of the

divergence. MACD is calculated for the following sets of n, n; = [3,6,18,36,117],

ns = [6,12,36,78,234] and n3 = [2, 4,12, 26, 78].

Divergence; = EW M A(Pyypicatt, 1/n1) — EW M A(Prypicar s, 1/12)

MACD = Divergence; — EW M A(Divergence, 1/n3)

(A.24)

(A.25)
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FicURE A.11: Moving Average Convergence-Divergence for n = 78

A.1.11 Money Flow Index (MFT)

MFI is a momentum indicator based on the product of price and volume, which is defined
as money flow. MFTI is calculated for n = [6, 12, 36, 78, 234].

MF; = PyypicarVolumey (A.26)

Then Positive Money Flow is defined as the cumulative sum of all the instances where
there has been a positive change in the price. Negative Money Flow is calculated using

the opposite logic.

n
MFtJr = Z MEIPtypical,tfi7Ptypicalt7i71>0 (A27)
=1
n
MFt_ - Z MEIPtypical,t—i_Ptypicalt—i—l <0 (A28)
=1

Where I is the indicator function.

Finally MFTI is calculated as the ratio of the Positive Money Flow to the sum of Positive

and Negative flows.
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MFI; = 100M—Ft+_ (A.29)
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FIGURE A.12: Money Flow Index for n = 78

A.1.12 Price Disagreement and Polarity

Disagreement and Polarity are measures frequently used in sentiment analysis, calculated
by the amount positive, negative and neutral news for a period of n. In this research we
are calculating Disagreement and Polarity using the positive, negative and neutral trad-
ing volume, as defined in A.3. These indicator are calculated for n = [0, 6, 12, 36, 78, 234].

S Volume) , — > Volume, ;
Py Volumezr_i + >, Volume,_;

I (A.30)

Disagreement; = |1 — |

n + n —
> iy Volume,”, — > " Volume,_,
n 0
> i—1 Volume,_;

Polarity, = (A.31)
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