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Abstract

Complex question answering (QA) refers to the task where a non-factoid query is
answered using natural language generation (NLG), given a set of textual passages.
A vital component of a high-quality QA system is the ability to rank the available
passages, and thus focus on the most relevant information during answer generation.
Another critical component of a QA system is learning from multiple answering
styles, extractive, or abstractive through a process called multi-style learning, which
helps to increase the performance of the individual styles by developing style-agnostic
question answering abilities. This research tackles complex question answering, by
focusing on these two essential features of a system, aiming to provide an improved
framework for the task. Firstly, ranker modules are usually pointwise, ranking the
passages in an absolute way by considering each of them individually from the rest,
which is a potential bottleneck to their performance. Thus, in this research, an
attention-based pairwise ranker is proposed that ranks passages in a relative way,
by identifying the comparable relevance of each passage to the rest. Secondly, it is
questionable whether multi-style learning is sufficient to combat the common data
shortage in the abstractive-styled answers, which possibly leads to the style being
under-trained. To mitigate this, a Style-transfer model is introduced, that first
learns a mapping from the extractive to the abstractive style and is subsequently
used to generate synthetic abstractive answers that can be utilized during multi-
style training. The recently proposed Masque model (Nishida et al., 2019), which
is a multi-style QA model that uses a pointwise ranker, serves as a baseline for
this thesis’s experiments. Inspired by the Masque architecture, PREAST-QA is
proposed by combining both pairwise ranking and style transfer. PREAST-QA
achieves competitive results in the MS-MARCO v2.1 NLG task and an improvement
of 0.87 ROUGE-L points in abstractive answer generation over the Masque baseline.
The success of the proposed model can be attributed to its increased ranking abilities
and its use of high-quality synthetic data generated from the Style-transfer model,
which further signifies the positive effects of multi-style learning, especially for low-

resource query types.
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Chapter 1

Introduction

1.1 Introduction to Question Answering

Question-Answering (QA) is a sub-field of Information Retrieval (IR) and Natural
Language Processing (NLP), which is concerned with providing an answer to a query,
given some textual passage. Based on the nature of the query, QA can be distin-
guished into two categories: factoid and complex. Factoid QA refers to the answering
of queries that deal with facts, which are usually “where”, “who”, and “when” type of
queries. The challenge of factoid QA is to locate the answer in the passage and derive
it from there. The second category, complex QA refers to “how”, “what” and “why”
type of queries, which usually require a higher level of reasoning over the passage,
and a complete answer is not necessarily located in a single textual span. Moreover,
QA can be further categorized on the answer type: extractive and abstractive. In
extractive QA, the answer is purely extracted from the passage, wherein abstractive
QA, the answer is synthesized in a generative way, and novel text is produced, that
is not necessarily part of the passage. Factoid queries can be answered in both ex-
tractive and abstractive ways, while for complex queries, it is usually only possible
to be answered in abstraction. Examples of factoid and complex queries, along with
the different answering forms, can be found in Table 1.1. From these examples, it
easy to identify the increased difficulty of answering complex queries, where inform-
ation from multiple parts of the passage has to be combined to produce a complete
answer. The current research is focused on these complex queries and on methods

that generate abstractive, well-formed answers, even when the query is of factoid

type.



Query: weather in amsterdam november

Passage: ... Averages for Amsterdam in November. November can be wet and chilly

in Amsterdam but it can also still be a very good time of the year to visit. However, visitors
will need to bring layers and a waterproof jacket because November is the wettest month of
the year, averaging 90mm of rain. ...

Answer(extractive): wet and chilly

Answer(abstractive): In Amsterdam, the weather is wet and chilly in November.

Query: what is agriculture and why is important

Answer: Agriculture is the source of supply of food, clothing, medicine and employment
all over the world. It is important to human beings because it forms the basis for food
security. It helps human beings grow the most ideal food crops and raise the right animals

with accordance to environmental factors.

Table 1.1: Examples of factoid and complex queries.

First example: factoid query, part of the passage, along with extractive and abstractive
answers. Underlined is the answer in the passage. Second example: a complex query along
with its answer, which is by default only abstractive.

This research was also conducted as part of an internship at Zeta Alpha', a company
that focuses on understanding and navigating scientific literature, especially in the
field of Artificial Intelligence (AI). Thus, another goal of this thesis is to develop sys-
tems that can answer queries within the domain of Al research, which are primarily
complex (Table 1.2).

How does overfitting happen in a neural network?
Why is ReLLU the most common activation function used in neural networks?

What is a convolutional neural network?

Table 1.2: Complex queries in the domain of Al research.

1.2 Neural Models

Modern approaches to the task of QA are neural encoder-decoder models, which
work in a sequence-to-sequence manner, and have been particularly successful in not

only question-answering but also in translation (Sutskever, Vinyals and Le, 2014)

'https://www.zeta-alpha.com/
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and summarization Nallapati et al., 2016, among others tasks. The encoder reads
and understands the passage and the query, models their interactions, and produces
meaningful representations. Given these representations, the decoder generates the
answer, token-by-token, in an auto-regressive way, by using the previously generated
tokens (Figure 1.1).

C Answer >

A A A

Encoder Representations Decoder

A

( Passage )( Query )

Figure 1.1: A sequence-to-sequence model.

A
Sequence-to-Sequence

The encoder receives as input the passage and the query, and models their interactions to
produce meaningful representations. The representations are fed into the decoder, which
generates the answer, one token at a time.

Traditionally, Recurrent Neural Networks (RNN), and more specifically, their Long
Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) counterparts, have
been used in the encoder and decoder, for understanding the query and the passage,
and generating an answer. These are usually coupled with an attention mechanism
(Bahdanau, Cho and Bengio, 2014) to enhance the decoder’s information from the
source sequence. The interactions between the query and the passage contribute to
significantly more informative representations and can be modeled effectively using
attention variants like Bidirectional Attention Flow (BiDAF) (Seo et al., 2016) or
Dynamic Coattention (DCN) (Xiong, Zhong and Socher, 2016). For extractive QA,
Pointer Networks (Vinyals, Fortunato and Jaitly, 2015) can be used to find the
most probable span in the passage that contains the answer, while for abstractive
approaches, tokens are generated from a learned vocabulary. Furthermore, Pointer-
Generator Networks (See, P. J. Liu and Manning, 2017) provide the flexibility to
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either copy a token from the passage or generate it from the fixed vocabulary, thus
combining both extractive and abstractive methods. Finally, in recent years, the
Transformer (Vaswani et al., 2017), which is a model relying heavily on attention
mechanisms, has been a key to the success of many approaches that solve sequence-

to-sequence problems and thus has also replaced LSTMs in QA tasks.

1.3 Complex Scenarios

The methods described above work relatively well for simple QA frameworks, but in
more realistic scenarios, there is not a single, but multiple available passages for a
query, where one may imagine the results of a search engine as an example. Addi-
tionally, a query might not even be answerable with the information of the provided
passages. The multiple passages and the non-answerable queries, add another layer
of complexity to the QA task, potentially making the encoder-decoder model incap-
able of solving it, since generating an answer from the combined passages increases
in difficulty with their number, as the decoder is not able to focus on the critical
information. Thus, a crucial part of QA becomes the ability to rank the available
passages based on their relevance to the query, subsequently guiding the decoder’s
focus. This procedure can be carried out by a ranker module that uses the repres-
entations of the query and each passage to assign them a relevance score. Since the
ranker and the decoder rely on the same representations, it can be beneficial to share
the encoder in a multi-task framework (Caruana, 1997). Finally, a module that dis-
criminates answerable from non-answerable queries can optionally be added to the

multi-task framework (Figure 1.2), along with the ranking and generation tasks.

Similarly, as the main task of answer generation can benefit from learning to rank and
classify, it can additionally benefit from learning different answering styles. Given
the query of the first example (Table 1.1), one can identify the two styles being the
short-extractive and the longer-abstractive. An answer of either structure relies on
the same processes to be generated, and thus a model can share the two answering
tasks. The effect of multi-style learning is even more significant in scenarios where
there is a shortage of available examples for a given style (Nishida et al., 2019).
Thus, a multi-style QA model can learn apart from style-specific, also style-agnostic

answering, increasing the performance of the under-represented style.
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Multi-task learning

Answer
Possibility Relevance Scores Answer
4 s

A A \ A

Classifier Ranker

H—} Representations _ Decoder

Encoder

Sequence-to-Sequence

RN

Query
Passages

Figure 1.2: A multi-task sequence-to-sequence model.

The encoder receives the available passages and the query and models their interactions to
produce meaningful representations. The representations are fed into the classifier, ranker,
and decoder, to discriminate the answerability of the query, obtain relevance scores for
each of the passages and if possible, generate an answer. The decoder additionally receives
the output of the ranker, providing extra guidance during answer generation.

The recent advancements in Question Answering are not only attributed to new
architectures like the Transformer, but also to large, labeled datasets that enable
models to learn more effectively. One example of such a dataset is the MS-MARCO
v2.1 (Nguyen et al., 2016), which has a size of 1 million queries issued by users of the
Bing search engine. A collection of relevant and non-relevant passages is included
for every query, and if this collection contains at least one relevant passage, one or
more answers are provided for it. Finally, for a portion of the answerable queries,
additional well-formed answers that are more abstractive than the standard ones,
are also given. The multiple passages, non-answerable queries, and multiple answers
establish the MS-MARCO, as a complex dataset, that is very similar to real-world
scenarios, and requires systems to perform various tasks at once, in order to model

it effectively.

The recently proposed Masque (Nishida et al., 2019) is a QA model that combines
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both the features described above, being multi-task and multi-style. It is based on
a Transformer encoder-decoder architecture that additionally uses a Multi-Source
Pointer-generator network, thus having the ability to either copy a token from the
passages and the query or generate an original one from a fixed vocabulary. The
passage-query interactions are modeled using a Dual Attention module that up-
dates their respective representations simultaneously and bidirectionally, based on a
common similarity matrix. Relevance ranking and answerability discrimination are
carried out by linear layers that classify each passage as relevant or not to the query
and the query as answerable or not. The decoder is conditioned on either of the
two answering styles, extractive or abstractive, and can thus generate an answer in
different styles. Masque proved to be particularly effective, achieving state-of-the-art
results on the Natural Language Generation (NLG) task of MS Marco v2.1, with its

success being attributed mainly to multi-style learning and effective passage ranking.

1.4 Motivation and Contributions

As argued in Nishida et al., 2019, passage ranking will be a key in developing QA
systems that outperform humans in the task. Although the ranker module of Masque
achieved high performance in discriminating between relevant and non-relevant pas-
sages, it does not use the full amount of available information provided for each
query. More specifically, it operates in a pointwise manner, by assigning a relev-
ance score to each passage independently from the rest. Consequently, the pointwise
ranker (PointRnk) aims to rank the passages for each query in an absolute way, and
thus, it is debatable whether it can effectively rank challenging cases that require a
relative point of view. To mitigate this issue, and considering the potential benefits
of increasing the efficacy of the ranker, a Pairwise Ranker (PairRnk) is proposed,
that approaches ranking in a relative way. The PairRnk method uses a transformer
layer that enables passage-to-passage attention, allowing the passages to exchange
information and obtain globally updated representations. Subsequently, it models
the comparative relevance of each passage to the rest, by a series of pairwise com-
parisons, where it breaks down the task from classifying n passages as relevant or
not, to classifying the relative importance of n x n passage pairs. Finally, PairRnk
aggregates the results of all the pairwise comparisons into a relevance distribution

over the passages that is used to guide the decoder during answer generation.
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There are two main advantages of this method in contrast to the PointRnk of Masque:

e Information: Global vs Narrow. PairRnk uses a transformer encoder
to update each passage representation with information from the rest of the

passages in the example.

e Setting: Relative vs Absolute. PairRnk does ranking in a relative setting,
by identifying the comparative advantage of each passage, through a series of

pairwise comparisons.

Experiments in the MS-MARCO, show that an encoder-only model, which uses
PairRnk, achieves an improvement of 2 points in Mean Average Precision over the
PointRnk method. Although the gap between the two methods decreases to 0.5,
with the decoder’s inclusion in the multi-task question answering scenario, the im-
proved ranking capabilities of the model translate to an increase of 0.74 ROUGE-L
points in abstractive answer generation, as compared to a Masque baseline that uses
PointRnk.

Multi-style learning is another key aspect of Masque, where the model learns to
generate answers in both extractive and abstractive styles. The multi-style feature,
apart from providing a flexible system for real-world applications, it additionally
increases the performance of both styles, by learning style-independent answering.
Although the ability to generate abstractive answers is of higher importance, since
the model can provide a more human-like answer to a query, it is usually harder
to develop. This difficulty is a direct consequence of a data shortage in abstractive
answers since constructing such datasets is a more time-consuming and expensive
process. The MS-MARCO falls into this category, having a well-formed, abstractive
answer for only 30% of the answerable queries. This begs the question of whether the
abstractive answering style of a QA model that uses MS-MARCO is under-trained,
due to the fewer available examples. The abstractive data shortage becomes even
more critical for certain query types, like “why” or “which”, that make up only a

tiny percentage of the total dataset (Figure 1.3).
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Figure 1.3: Query type distribution with abstractive answers.

The queries are categorized by whether they contain certain keywords, with the most not-
able categories being shown here. The total number of answerable queries with abstractive
answers is 152 thousand, and for reference, the largest category, “what”, makes up 63
thousand of them, or 41%. A small overlap of 2 thousand queries between categories is
omitted for this visualization.

It is hypothesized that, especially for these low-resource query types, there are not
enough training examples to learn the specific patterns of their abstractive answering
style. Thus, to enrich the abstractive style with more trainable examples, a Style-
transfer, transformer-based model is proposed, that first learns a mapping from the
extractive to the abstractive style, and then it is used to generate abstractive answers
for all the answerable examples in the dataset. The proposed Style-transfer model
can produce abstractive answers of high quality, with an overall ROUGE-L score
of 87, and even above 90, for certain query types. A synthetic dataset, generated
by the Style-transfer model is additionally used in multi-style training, improving
the abstractive answer generation in low-resource query types, which consequently
increases the average ROUGE-L score by 1.18 points, as compared to a Masque
baseline that is trained on the non-augmented dataset. Furthermore, training on the
synthetic data, aids in relieving a data bias that is absorbed by the artificial tokens in
multi-style training. The unequal distributions of the answers that are available for

each style cause the model to output completely different answers for the extractive
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and abstractive styles, given the same passages and query, in 6.6% of the cases. The
inclusion of the synthetic abstractive answers bridges the gap between the styles and

reduces the inconsistent generations to 4.8% of the cases.

Inputs

\/

— Passages & Queries
Seq2seq model

i —
— Extractive Answers

_ sampling l
| e

Abstractive | Synthetic Abstractive
Answers Answers Stage 2:

Z Multi-style training

Target Stage 1:
Style-Transfer

\

Data
Augmentation

Seq2seq model
Inputs

]

1

.. !
Training ! Inference

1

1

Figure 1.4: Data Augmentation through Style-Transfer.

Stage 1: A sequence-to-sequence model is trained on the subset of the examples that have
both extractive and abstractive answers available. The trained model produces synthetic
abstractive answers for the examples that only have extractive answers available.

Stage 2: A sequence-to-sequence model is trained on the question-answering task using
multi-style training, where for each training example, the sampled target can be either
extractive or abstractive, and for the latter one, either true or generated.

In the framework of multi-task learning, Masque classifies each example as answer-
able or not, by mapping the concatenated passage representations to a scalar through
a linear layer. It is found that this method uses a very high amount of parameters,
for a purely auxiliary task, taking away a significant percentage of the complex-
ity from the encoder. Additionally, it introduces a bias regarding each passage’s
position in the example, which decreases the classifier’s performance due to noisy

training signals. To illustrate this bias, if the passages in the example are shuffled
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and given a decision boundary of 0.5, the classifier of Masque has different predic-
tions in 2% of the cases. In this research, these issues are fixed by a much simpler,
position-agnostic, max-pooling classifier that achieves significantly better classifica-
tion accuracy compared to Nishida et al., 2019 and enable the encoder to produce

higher quality representations.

Finally, all the proposed methods are combined in a Masque-inspired model, called
PREAST-QA (Question-Answering by Pairwise Ranking and Extractive-Abstractive
Style Transfer) that not only achieves high results in abstractive answer generation,
but also is more effective in passage ranking, and answerability classification, in com-
parison with a vanilla Masque re-implementation. More specifically, PREAST-QA
improves the ROUGE-L score by 0.87 in the NLG development set of MS-MARCO,
and reduces the difference with the original implementation of Masque (Nishida et al.,
2019), which additionally uses contextualized embeddings. Furthermore, PREAST-
QA achieves comparable results with Nishida et al., 2019 in passage ranking and
even superior, by almost 1 point in F1 score, in answerability classification, provid-
ing a competitive multi-task system, without relying on external information from
pre-trained models like ELMo (Peters et al., 2018) or BERT (Devlin et al., 2018).

To summarize, the main contributions of this thesis are the following:

1. A Pairwise Passage Ranker is introduced that learns the comparative ad-
vantage of each passage to rest and enables better ranking, which directly in-
creases the answer generation capabilities of a QA model. Its success is partly
attributed to the use of a passage-to-passage transformer, which effectively

fuses information from all the passages.

2. A Style Transfer model is proposed, which learns a mapping from the ex-
tractive to the abstractive answering styles and is used to generate high-quality
answers for the latter one. The synthetic answers augment the multi-style
learning procedure, further increasing the abstractive style’s performance, with

the improvements being more significant for low-resource query types.

3. Masque’s Answerability Classifier is found to suffer from positional bias
and is replaced by a simpler, position-agnostic classifier leading to substantially

better accuracy.
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1.5 Thesis Outline

The rest of the thesis is organized in 5 chapters. The related works in question-
answering, encoder-decoder models, multi-task learning, and multi-style learning are
covered in chapter 2. Following, in chapter 3, a background is provided in attention
mechanisms, transformers, and pointer-generators. Then, chapter 4 builds on the
background by firstly introducing the Masque architecture in section 4.1, which is
the basic model used in this research. In the same chapter, sections 4.2, 4.3 and 4.4
are used to propose the new methods of this research, namely the pairwise ranker
and the style-transfer model and resolve the issues of the answerability classifier of
Nishida et al., 2019. Details on the dataset, and training and evaluation of the
models are given in section 5.1 of chapter 5. Following, in section 5.2, are the main
results and ablation studies regarding passage ranking and answer style transfer. An
application of PREAST-QA in the domain of Al scientific literature is presented
in section 5.3. Finally, the conclusions of this thesis and the possible directions of

future research are discussed in chapter 6.
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Chapter 2
Related Works

2.1 Question Answering and

Machine Reading Comprehension

Following a comprehensive review study of Machine Reading Comprehension (MRC)
and Question Answering (QA) in S. Liu et al., 2019, there are four essential parts of
a QA system. These are the type of embeddings, the encoder feature extractor, the

nature of the interaction between the passage and query, and the required answering

type.

Word Embeddings: The choice of embeddings was traditionally one of the pre-
trained distributed word embeddings GloVe (Pennington, Socher and Manning, 2014)
or word2vec (Mikolov et al., 2013), which can be frozen or fine-tuned after ini-
tialization. In order to be able to deal effectively with out-of-vocabulary (OOV)
words, character-level embeddings (Kim et al., 2015) can be additionally employed
(Y. Wang et al., 2018). Recently, with the proven effectiveness of large scale pre-
trained language models like ELMo (Peters et al., 2018), Bert (Devlin et al., 2018)
and other variants (Lan et al., 2019), contextualized embeddings have become a
crucial component of state-of-the-art QA systems. The next-word prediction and
masked-language modelling tasks enable these models to gain language understand-
ing, which can then be used by a QA system by transfer-learning. It is worth noting
that QA models which heavily rely on the use of contextualized embeddings (Z.
Zhang, Wu, Zhou et al., 2019, Z. Zhang, Wu, Zhao et al., 2019), have surpassed
human performance on the SQuAD dataset (Rajpurkar et al., 2016). Although very

effective, contextualized embeddings are out of scope for this research, due to their
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possible interference with the rest of the mechanisms and their heavy computational
burden. Thus, the embeddings of this research are initialized with GloVe and fine-

tuned during training.

Encoder: Modern QA systems process and understand the passage(s) and the query
and learn to extract meaningful features. A standard choice for an encoder feature
extractor is a Recurrent Neural Network (RNN), usually an LSTM (Hochreiter and
Schmidhuber, 1997) or its lightweight version, a GRU (Chung et al., 2014). Apart
from RNNs, a Convolutional Neural Network (CNN) (D. Chen, Bolton and Man-
ning, 2016) can also be used to read and understand the inputs, as in Chaturvedi,
Pandit and Garain, 2018, where a CNN encoder surpasses LSTM-based models in
multiple-choice QA. To further increase the capabilities of the QA system, encoders
can additionally combine an attention module (Bahdanau, Cho and Bengio, 2014).
Since 2017, research has shifted towards fully attentional encoders, like the Trans-
former architecture (Vaswani et al., 2017), taking advantage of their ability to be
parallelized (contrary to RNNs) and their global receptive field (contrary to CNNs).
Furthermore, QA-Net (A. W. Yu et al., 2018) utilizes both the local features of CNNs
and global features from multiple transformer layers, which enabled their model to
achieve significant improvements in the SQuAD dataset. The encoders used in this
research are transformer-based, which are shared or not between the sequences of

the input side.

Passage-Query Interaction: The interaction between passage and query, is ne-
cessary for fusing information and identifying the parts of the passage that are ne-
cessary to answer the query. Once again, an attention module is adopted for this
purpose, which can be either uni-directional, where the query informs a passage, or
bi-directional where additionally, the passage informs the query. The Bi-Directional
Attention Flow (BiDAF) (Seo et al., 2016) and the Dynamic Coattention Module
(DCN) (Xiong, Zhong and Socher, 2016) are typical examples of the later, where
passage-query similarity matrix is normalized across different dimensions to get two
distinct attention matrices that update the representations for the context and the
query. The use of multiple interactions between passage and query has also been
proven effective, with implementations like DCN+ (Xiong, Zhong and Socher, 2017),
that utilizes the co-attention module in two parts of the encoder or the Reinforced

Mnemonic Reader (Hu, Peng and Qiu, 2017), that re-attends multiple times to past
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attentions, addressing the problems of attention redundancy and attention deficiency.
For this research, the passage-query interactions are modelled with a Dual Attention
(Nishida et al., 2019), which is a variant of BiDAF and DCN. Additionally, for the
Style-transfer task, the interactions between three sequences are modelled by a fu-
sion of three Dual Attention over the three possible sequence pairings, which takes

place at two points during encoding, making it multi-hop.

Answering Type: The type of answer for a QA task can be distinguished in single-
word prediction, multiple option selection, span extraction or free-form answer gen-
eration. Single-word prediction problems require the model to find the most probable
word in the passage(s), that complete or fill a gap in the query. Pointer-Networks
(Vinyals, Fortunato and Jaitly, 2015) have been successfully employed for the task,
by defining a probability distribution over the tokens in the passage(s) (Kadlec et al.,
2016). In multiple-option selection, a model reads and understands the passage(s)
and query and selects the most probable answer from a given set of options. Ro-
bust methods for tackling this task usually include a similarity measure between a
query-updated passage representation and the available options (Chaturvedi, Pan-
dit and Garain, 2018), (Z. Chen et al., 2019). The span extraction answering task
adds another level of complexity to single-word prediction, where the model has to
predict the most probable span in the passage instead of a word. Again, Pointer-
Networks are powerful methods for solving the problem, by defining two probability
distributions over the passage, to infer the most probable start and end points of the
answer span (S. Wang and Jiang, 2016, Xiong, Zhong and Socher, 2016). Finally,
free-form answering is considered the most challenging task, where the answer is not
necessarily part of a span in the passage and has to be generated from a learned
vocabulary, token-by-token. An early approach to the task is the S-NET (Tan et al.,
2017), where the model first extracts possible spans from the passages and the query
using bidirectional GRUs and Pointer-Networks. The possible answer spans serve
as an input to a decoder that synthesizes them into a single answer. This two-steps
approach enabled S-NET to reach human-level performance in the QnA task of MS-
MARCO. Pointer-Generator Networks (See, P. J. Liu and Manning, 2017) have also
been successfully applied for free-form answering, where at each decoding step, the
model can either copy a token from the inputs or generate a novel one from a learned
vocabulary. This research deals with the latter answering type, which is approached

by language generation, where a transformer decoder employs a multi-source pointer-
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generator, allowing the copying of tokens from multiple sources or the generation of

novel tokens from the vocabulary.

2.2 Multi-task Learning and Ranking

Multi-task learning has shown great promise in combining several NLP tasks, using
the high relatedness among them that provides an inductive bias, forcing models to
learn more generally useful representations (Mitchell, 1980). Lately, this has become
a quite common practice, with many applications in unified classic language tasks,
like dependency parsing, Part-of-Speach (POS) tagging, Named Entity Recognition
(NER) and inference (Collobert et al., 2011), (Hashimoto et al., 2016). The Natural
Language Decathlon (DecaNLP) (McCann et al., 2018) has shown the levels at which
multi-task learning is useful NLP problems, by jointly training a model that performs

10 tasks at once, including translation, question answering and summarization.

For question answering, multi-task learning has been effectively used in Y. Wang et
al., 2018, where their QA model jointly learns to predict the answer span, the answer
content and the cross-passage answer verification. More specifically, the answer
span module predicts possible boundaries using a Pointer-Network, and the answer
content module identifies the words in these spans that should be included in the
answer. Finally, the cross-passage answer verification module, enables information
exchange between the candidates, in order to verify or not each other, by obtaining
passage-specific verification scores. The verification scores are subsequently used to
rank the potential candidates and augment the token selection process. The joint
learning of these three tasks enabled their model to surpass other QA models, like S-
NET, in terms of both ROUGE-L and BLEU-1 for the MS-MARCO dataset. They
additionally show how a heuristic-based passage ranker can significantly enhance
the performance of BiDAF baseline in DuReader (W. He et al., 2018) and thus
incorporate it into their final model to gain a further increase in terms of bleu-4 and
ROUGE-L.

The Deep Cascade model (Yan et al., 2019) tackles the problem MRC over extens-
ive text collections, achieving high results in the TriviaQA (Joshi et al., 2017) and
DuReader datasets. They follow a three-step process, in which their parameters are

shared and jointly learned. Firstly, a module ranks the available documents to their
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relevance with the query using a pointwise approach with traditional retrieval met-
rics, like BM25 and TF-IDF. Following, an XGBoost (T. Chen and Guestrin, 2016)
pointwise ranker selects the most relevant paragraphs from the ranked documents of
the previous stage. Finally, a Pointer-Network identifies the most probable answer

from the ranked paragraphs.

In Reinforced Ranker-Reader (R?) (S. Wang, M. Yu et al., 2017), they jointly train
a reader and a ranker using reinforcement learning. The ranker module produces
a probability distribution over the passages, using a softmax normalization over
their concatenated representations. Subsequently, the reader module employs REIN-
FORCE (Sutton et al., 2000) to select a passage based on the computed distribution
and then selects an answer span from it. Masque (Nishida et al., 2019) also uses a
pointwise ranker that shares the encoder with the rest of the QA model to obtain
relevance probability for each passage. The relevance probabilities are passed on to
the decoder, augmenting the generation process and preventing it from attending to

irrelevant passages.

Contrary to the techniques above, the ranker proposed in this thesis solves a pair-
wise ranking task and then translates the pairwise comparison results to relevance
probabilities for each passage. Furthermore, it combines the passage representa-
tions at a lower level than the R® model, by using a transformer layer to enable
passage-to-passage information exchange. This idea is also explored in the Hier-
archical Transformer (Y. Liu and Lapata, 2019) for multi-document summarization.
They propose a Global Transformer layer to share information between passages and

thus obtain richer representations.

2.3 Multi-style Learning and Style Transfer

Multi-style training was first proposed for Neural Machine Translation (NMT) (John-
son et al., 2016), where artificial tokens specific to each language control the output
language of the translation, achieving state-of-the-art results at the time. Artificial
tokens have additionally been used in NMT to enforce various constraints in the
target sequences (Sennrich, Haddow and Birch, 2016), or control politeness (Takeno,
Nagata and Yamamoto, 2017). Using artificial tokens and multi-style training was

introduced into the field of question answering in Nishida et al., 2019, where they
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use two styles, an extractive and an abstractive to train an encoder-decoder trans-
former in the MS Marco dataset. They furthermore achieve state-of-the-art results
the NarrativeQA dataset (Kocisky et al., 2017), by fine-tuning their model with the

use of a separate style for the examples in it.

Style transfer is a concept explored in the context of formality transfer, where given
an informal sentence, a model produces its formal counterpart. In Y. Zhang, Ge
and Sun, 2020, they investigate three different approaches to the task, namely back
translation, formality discrimination, and multi-task transfer. Back translation is
widely used in NMT, where a sequence-to-sequence model produces synthetic parallel
sentences to augment the translation data. A formality discriminator CNN-based
model identifies whether an informal sentence has become formal after a round-trip
translation, and appends it to an augmented dataset. Finally, multi-task transfer
uses data from a Grammatical Error Correction (GEC) dataset to teach a sequence-
to-sequence model how to translate informal sentences that contain grammatical
errors to formal ones, by fixing their errors. Pre-training on the style-transferred
augmented data created by these techniques and then fine-tuning on the original
data improved the models’ performance on the GYAFC dataset (Rao and Tetreault,
2018). In this research, similarly to Y. Zhang, Ge and Sun, 2020, a sequence-to-
sequence learns how to translate extractive-style answers to abstractive ones and is
subsequently used to augment the MS-MARCO dataset with synthetic abstractive

answers that are used together with the original data during training.
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Chapter 3

Background

3.1 Attention Mechanisms

Attention has revolutionized how sequence-to-sequence models work by effectively
modeling in- and cross-sequence interactions. This research’s methods rely heavily
on attention mechanisms to model the interactions between three different types of
sequences, namely, questions, passages, and answers. In this section, four essential
attention mechanisms are presented, the Additive Attention (Bahdanau, Cho and
Bengio, 2014), Bidirectional Attention Flow (Seo et al., 2016), Dynamic Co-attention
(Xiong, Zhong and Socher, 2016) and Multi-Head Attention (Vaswani et al., 2017).

3.1.1 Additive Attention

The Additive attention (Bahdanau, Cho and Bengio, 2014) between a sequence rep-
resentation M* € R%*? and the i-th token representation of a sequence y, MY € R4
is used to obtain vectors ¢ € R? and af € R%. The vector ¢¥ corresponds to the
context of the i-th token in y informed by the the entirety of x, while af are the
attention weights of the i-th token in y, which define a probability distribution over

the tokens of sequence .

Two linear layers map the sequence representation of z to the key K € R%*¢ and

the i-th token representation of y to the query' @ € R

IThis is a standard notation for the attention, not to be confused with the actual query in the
question answering framework.
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K=M"W~E (3.1)
Q=MY W? (3.2)

., where WX W@ ¢ R¥*? are learnable parameters.

In order to obtain the attention weight of the i-th token in y, an energy vector is
computed via a non-linear transformation. Then a softmax normalization is applied
across the sequence length dimension of x. Thus, for the i-th token in y and for the

J-th token in z:

€ij = tanh(Kj + Ql) - w® -+ b°¢ (33)

o = softmax(e;) (3.4)

, where e; € R® is the energy vector, tanh(-) is the hyperbolic tangent function and

we, b® € R? are learnable parameters.

Finally, the context vector ¢ € R? is obtained by the inner product of the sequence

representation and the attention weights.

cf = (M")" - af (3.5)

(2

, where T is the transpose operator.

Apart from the context, the attention weights, are also of use for modules outside of
the Additive Attention. Thus, Additive Attention is defined as:

cf,af = AddAttn(M*, M) (3.6)

3.1.2 Bi-Directional Attention Flow

For sequence representations H® € Rf%*4 HY ¢ R%*? a Bi-Directional Attention

Flow (BiDAF) module is used to fuse information from z to y and from y to x.
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This process is especially useful for tasks where more than one sequence has to be
encoded, as in the task of Question Answering. The advantage of BiDAF is that the
bidirectionally updated representations originate from a common similarity matrix
U € R%*%  in which, the element Ui; denotes the similarity between the i-th token
in x and the j-th token in y.

Uy = [H, H}, Hf © H}] - w" (3.7)

, where [+, -, -] denotes horizontal concatenation, ® is the element-wise multiplication

operator and w* € R3¢ is a learnable parameter.

Following, the z-to-y attention weights A € R%*% are obtained by a softmax nor-
malization across the columns of U. Accordingly, the context vectors HY € Rf=*¢ of

x are obtained via a matrix multiplication.

A = softmax,q(U) (3.8)
Hvy = A-HY (3.9)

The y-to-z attention weights b € R% define a probability distribution of sequence
y over each token in x. Using these attention weights, the updated context vectors

He € R%*4 are obtained, where for each token i:

b= softmax(maxwl(UT)> (3.10)
Ly
Hf => b - H} (3.11)

Finally, the new representations are combined by vertical concatenation to yield the

bidirectionally informed representation of the = sequence, G' € Rf=*44,

G =[H", Hv, H* © HY, H* © H"| (3.12)

Background 20



3.1.3 Dynamic Co-Attention

Dynamic Co-Attention Networks (DCN) have been used similarly to BiDAF, to
model the interactions between two sequences x and y in the encoder. For sequence
representations H* € R%*4 HY ¢ R%*9 a similarity matrix U € R%*% is computed
as their dot product and the attention weights AY € Rf>%  A* ¢ R%*% are obtained

via normalization across rows and columns.

U=H"(H")" (3.13)
AY = softmax., (U) (3.14)
A" = softmax,,; (U") (3.15)

Then context for the y sequence C¥ € R%*4 can be computed by the dot-product of
the attention weights and the sequence representation and the updated representa-

tion HY € R%*4is the concatenation of the pre-DCN and z-attended representations.

CY = M* - AY (3.16)
HY = [HY,CY| (3.17)

Following, the context for the x sequence, C* € R%*2? is computed similarly and

the updated representation H* € R%*3¢ is obtained via concatenation.

C*= MY HY (3.18)
H* = [H",C”] (3.19)

3.1.4 Multi-head Attention

The multi-head attention (MHA) module is the key component of the Transformer,
where features are extracted from multiple subspaces of the input. Multi-head atten-
tion can model interactions between a sequence and itself or between two different
sequences. Following is an overview of the more general case that deals with two

sequemnces.
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A sequence H* € R%*% is projected to via linear transformations to two different
representations, K € R%*% and V € R%*%_ called key and value, where /, is
the sequence length for x, d, is the feature dimension of x and d, is the attention
dimensionality. Another sequence HY € R%*9 is projected to a representation

Q € R%*%_which is called query, through another linear transformation.

K=H" WK (3.20)
V=H"-WY (3.21)
Q=HY W@ (3.22)

, where WE WV € Réexd= and W@ € R%>% are learnable parameters.

Each of the three representations is separated into h heads, by equally splitting
the feature dimension, thus obtaining K;, V; € Rf%*dread and @Q; € R%*dhead where
dhead = d/h. The scaled dot-product attention is calculated, where each token in @)

can attend to each token V', in h different subspaces.

AttnHead; = softmax,( -V (3.23)

. where AttnHead; € Rf*%head |

The modified representations of the A subspaces are combined into a final represent-

ation, by concatenation and another linear transformation.

Hv = [Attheadl; . ;Attheadh} - We (3.24)
, where [;...;-] indicates vertical concatenation and W° € R%*4v is a learnable
parameter.
There are three different use cases of Multi-head Attention in the Transformer.

e Encoder Self-Attention: In this case, a sequence representation in the En-
coder H”, can attend to itself, and thus the key, value, and query, all come

from the same sequence.
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enc

H* =MHA (H*, H") (3.25)

e Decoder Self-Attention: A sequence representation in the decoder HY, at-
tends to itself, in a similar way as the Encoder Self-Attention. A process called
masking is additionally applied to prevent left-to-right information flow. Thus,
a token can attend to all the tokens until and inclusive of its position. Masking
is applied in the scaled dot-product attention of each head, before the softmax

normalization, by setting the corresponding scores to —oc.

dec

Hv =MHA (HY, HY) (3.26)

e Encoder-Decoder Attention: The final representation of an encoder se-
quence M¥ is attending to a decoder sequence representation HY. This case is
the most general one, where x gives rise to the key and value, while y serves

as the query.

enc—dec

Hy =MHA (M*, HY) (3.27)

3.2 Transformers

The success of Transformer architectures (Vaswani et al., 2017) is attributed mostly
to their ability to handle sequence modeling on parallel by making use of atten-
tion mechanisms. The Transformer can be divided into two parts, the encoder,
responsible for processing the input sequence, and the decoder, which, given the
encoded representation of the input sequence, is responsible for decoding the output
sequence. Before going through the encoder and decoder parts, it is useful to explain

three position-wise modules that are at use.

3.2.1 Position-wise Modules

e Positional Embeddings

Due to the non-autoregressive nature of the Transformer, it is necessary to

provide information about each token’s position in the sequence through the
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use of positional embeddings. The sinusoidal encoding is a common practice,
where the relative position is encoded as a sine or cosine function of the position
and dimension of the embedding. For a sequence x of length /., the positional

embedding matrix for a sequence EP° € R Xdems

sin(i/100007/deme) if j is even
Eip;s — ( / . ) j (328)
cos(i/100007/9emv) if § is odd

, where d.,,; is the dimensionality of the embeddings. The positional embed-
dings EP°® are added to the word embeddings, providing information about

each token’s position in the sequence.
Feed-forward Networks

The feed-forward networks in the Transformer have one hidden layer, with
a non-linear activation, and are position-wise, treating each feature independ-
ently. This module is used identically in both encoder and decoder transformer
layers. For a feature vector € R?, the position-wise feed-forward network per-

forms the following operation.

FFN(z) = f(z - W™ +5™) - W 4 pout (3.29)

, where f(-) is a non-linear activation function, Wi € Ré*dn Jyout ¢ Rdnxd

bin € R povt € R,
Layer Normalization

Normalization techniques are usually used in large deep neural networks to
normalize the activities of each neuron in a layer and ensure a more efficient
and stable training. Layer Normalization (J. L. Ba, Kiros and Hinton, 2016) is
the go-to technique for Transformer architectures. For each neuron, the layer
normalization module encodes the distribution of its inputs by using adaptive
parameters v and 3. For a feature vector € R?, Layer normalization performs

the following operation.
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LN(z) = “m Ov+p (3.30)

, where the gain, v € R? and the bias, 8 € R? are learnable parameters, E[] is
the average operator, V|| is the variance operator and € € R is a small constant

introduced for numerical stability.

3.2.2 Encoder

A transformer encoder is made up from several transformer encoder layers, where
each layer has two sub-layers. The first is a multi-head attention module (Section
3.1.4) that extracts features from different parts of the input space, followed by a
feed-forward network (Section 3.29). After each sublayer, a residual connection (K.
He et al., 2015) and a layer normalization (Section 3.30) are applied. Thus, the
i-th transformer encoder layer, for the sequence representation H” (i_l)e R > of the

previous layer, can be defined as:

g = LN<a>< MEA (57 T ) Y ) (3.31)
g = LN® (FFN(}F@) + Hw‘”) (3.32)

, where the input for the first transformer encoder layer is the output of the embed-

ding layer and thus H =0 _ E*.

3.2.3 Decoder

A transformer decoder layer has a similar structure as the encoder. Each decoder
layer is comprised of three sub-layer. First, a decoder self-attention module (Eq.
3.26), followed by an encoder-decoder attention module (Eq. 3.27) and lastly a feed-
forward network (Eq. 3.29). Again, residual connections and layer normalization
(Eq. 3.30) are applied after each sublayer. Thus, for the output of the encoder
M?® € R%*? and the result of the previous decoder layer AV Ve ROvxd the j-th

decoder layer is defined as:
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- G dec i i i
Hy():LN(“)<MHA(Hy( Do) 1’) (3.33)

= (i) enc—dec — (i - (4
= LN<b>< MHA (M7, 507 4 H' )) (3.34)
A" = LN© (FFN(ﬁy(Z)) + ﬁy@) (3.35)

© is the embeddings of the shifted-right y

sequence. The final output of the transformer decoder is projected with a linear

, where the input of the first layer, HY

layer and a softmax normalization to a probability distribution over the tokens in

the vocabulary.

Output Probabilities

RN,

f |
N x
g ! J
Encoder 1 1 Decoder
| |
1 1
Input Embedding Layer Output Embedding Layer
& &
Positional Embeddings Positional Embeddings
1 1
| |
Inputs Outputs

(shifted right)

Figure 3.1: The Transformer architecture.
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3.3 Pointer-Generators

Pointer-Generator Networks (See, P. J. Liu and Manning, 2017) bridge the gap
between extractive and abstractive language generation techniques, where for each
position ¢ in the target sequence, the model can either generate a token from the
vocabulary or copy a token from the input sequence. The copying mechanism en-
ables the inclusion of out-of-vocabulary (OOV) tokens in the output sequence, by
operating on an extended vocabulary V¢ which contains the tokens in the fixed
vocabulary V7/#¢d and the tokens of the input sequence. Thus, the extended vocab-
ulary is dynamically defined for each input sequence x and Ve > V/fi#ed  Given the
representation of the input sequence M?® € R%*? coming from an encoder module
and a representation of the t-th token in the target sequence M} € R?, an additive
attention module (Section 3.1.1) is used to obtain a context vector ¢f € R? and

attention weights af € R.

¢y ay = AddAttn (M, M) (3.36)

The attention weights define a probability distribution over the token positions in
the input sequence, and the context vector is a summary of the input sequence
information for the ¢-th position in the target sequence. The attention weights can
be mapped into probabilities over the extended vocabulary by a dot-product with
the one-hot encoded representation of the input sequence in the extended vocabulary
St € 10, 1}V - The probability distribution over the fixed vocabulary is

ext
obtained via a linear mapping and a softmax normalization.

PP (yr) = af - S (3.37)
P9 (y;) = softmaX(Mty (W 4 bom)) (3.38)

fized fized
, where WUt € RVl and bt € RVl are learnable parameters.

To combine the two distributions, are probability pg., € [0,1] is calculated by using
the context of the source sequence and the representation t-th token of the target

sequernce.
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Pgen = sigmoid([cf, MY] - w9 + bge”) (3.39)

, where w9 € R??, p9°" € R are learnable parameters.

Then, the final distribution over the extended vocabulary can be obtained by:

P (y,) = pgen - P*" () + (1 = pgen) - P (1) (3.40)
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Chapter 4
Methodology

In this chapter, the Masque model (Nishida et al., 2019), as well as the new methods

proposed in this research are introduced in more detail.

4.1 Masque

Masque (Nishida et al., 2019) is a sequence-to-sequence, encoder-decoder transformer
(Vaswani et al., 2017) that additionally combines a Pointer-Generator (See, P. J. Liu
and Manning, 2017). It uses multi-task learning by sharing the encoder part with
a passage ranker and an answerability classifier and multi-style learning by sharing
the whole model with two answering styles. The naming convention of the two styles
from Nishida et al., 2019 is adopted, where QA refers to the extractive style and NLG
to the abstractive one. The model is tasked with generating an answer, a probability
that the query is answerable, and a relevance probability for each of the K passages,

by using the query, the K passages, and a specified answer style. More formally, it
0. P}, ), where:

e y € N7 is the answer, represented by a sequence of tokens in the vocabulary
with length T

maximizes the conditional probability P(y, a, {r}

e o € {0, 1} is the answerability label, with 0 indicating that the answer is not

answerable and 1 indicating that it is answerable

o {r}¥ are the relevance labels for each one of the K passages, where 7, € {0, 1}
is the relevance of the k-th passage with respect to the query, with 0 indicating

the non-relevant label and 1 the relevant label

!The code for all models, including the implementation of Masque will be available at https:
//github.com/johntsi/preast_qga
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g € N/ is the query, represented by a sequence of tokens in the vocabulary
with length J

{p}f are K passages, with p, € NZ* representing the k-th passage, with a

sequence of L tokens in the vocabulary

s € {0, 1} is the style label, with 0 indicating the QA style and 1 indicating
the NLG style

Masque can be separated into five essential components (Figure 4.1). The imple-

mentation of Nishida et al., 2019 is closely followed, with the most notable difference

between the two implementations lying in the Embedder (Section 4.1.1).

The Embedder produces an embedding for a given one-hot encoded sequence

and is shared among passages, queries, and answers.

The Encoder combines three transformer encoders and a dual attention mod-
ule that fuses information from each passage to the query and from the query
to each passage. It produces a representation for the query and each passage

in an example, given their embeddings.

The Rassage Ranker generates a relevance probability S € R, given the
representation of the k-th passage from the encoder. Thus, for the k-th passage,
it maximizes the conditional probability P(Tk| Dks q)

The Answerability Classifier generates a probability that the query is an-

swerable, given the K passage representations from the encoder, by maximizing
P(al{p}¥.q)

The Decoder combines a transformer decoder and a multi-source pointer gen-
erator that mixes several distributions to obtain the final distribution for the
t-th position in an answer. It uses the K passages and query representations,
the relevance probabilities, and the answer embeddings until position ¢t —1. The
decoder is furthermore conditioned on the required answering style, indicated
by a special token at the beginning of the answer. Thus, for position ¢ in the

answer, it maximizes the conditional probability P(yt\{p}{{ S Y1y 5 YL, 3).
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Figure 4.1: The Masque architecture.

4.1.1 Embedder

The embedder module is common for all types of sequences. Thus for an arbitrary
sequence z, which is either a passage pp, a query ¢ or an answer y, its one-hot

encoded representation, S(};,.q € {0, 1}4xIV7 s mapped to an embedding matrix
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E® € Rf=*demv wwhere |V7/%@¢d| i the size of the fixed vocabulary, ¢, is the length of

the sequence and d,,,;, is the dimensionality of the embeddings.

E* = S¥jiyeqy - WO + E27 (4.1)

, where Wemb ¢ RIV/"™“Ixdems g the learnable embedding projection matrix and

E©pos ¢ Rfexdems ig the positional embedding matrix, as defined in equation 3.28.

Here lies the most notable difference between the implementation of Masque in this
research and Nishida et al., 2019. In this implementation, the embeddings are 300-
dimensional vectors, initialized with GloVe (Pennington, Socher and Manning, 2014),
and fine-tuned during training. The original implementation fuses the GloVe em-
beddings with the 512-dimensional ELMo embeddings (Peters et al., 2018) with a
2-layer Highway Network (R. K. Srivastava, Greff and Schmidhuber, 2015), adding
approximately 3 million? more parameters to the model. Contextualized embeddings
contribute to Masque’s success, but they are omitted from this research’s implement-
ation for two main reasons. Firstly, although they contribute to increased model per-
formance, they introduce outside information to the task and possibly interfere with
the effect of the investigated methods. Secondly, they rely on large, computation-
ally heavy models, which significantly increase training time and required resources.
Finally, in Nishida et al., 2019, due to the use of ELMo embeddings, no positional

encoding is needed.

4.1.2 Encoder

The Encoder is used to obtain the representation MP+ € RY*4 for the k-th passage
and M9 € R7*? for the query. The embeddings of the passages and the query are
passed through a shared transformer encoder to extract universal features. Following,
a dual attention module fuses information from the query to each passage, and from

all the passages to the query.

For a passage representations H?* € RF*? and query representation H? € R7*4

2Tt is not clear whether the highway network is shared between all the sequences. However, most
probably, a different one is used for the decoder, making it in total four layers of size 812, which
translates to 4 x 812 x 812 more parameters. Additionally for each of the shared transformer encoder
and the transformer decoder the initial mapping to d-dimensional vectors, thus additionally using
another 2 x 512 x 304 parameters.
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obtained from the shared transformer encoder, a similarity matrix U* € RF+*7 is
computed, as in BIDAF (Section 3.1.2). Thus, the similarity between the [-th token
in the k-th passage and for the j-th token in the query is:

Uf = [H*, H], H* © H] - w™ (4.2)

, where w € R3¢ is a learnable parameter.

The similarity matrix is normalized per columns and rows to obtain attention weights
Ak ¢ RE-*T and BF ¢ R/*1x,

AF = softmax,, (U k)
(4.3)
BF = softmaxcol((Uk)T)

Finally, the bidirectionally informed representations for the K passages G97Pr &
RE#X54 and for the query GP~4 € R7*% are obtained using dynamic co-attention
(Section 3.1.3).

AF = Ak . [ (4.4)
B* = B* . gre (4.5)
Ak = Ak BF (4.6)
Bk =B*. A (4.7)

. where A*, AF € RE#%d and B, B* e R’ *d_ which are then combined via horizontal

concatenation as:
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, where B, B € R7*? are the aggregated information from all the passages using a

max function.

After the dual attention layer, the fused representations for the passages are passed
through a transformer encoder, shared among all passages, and the query to a sep-
arate transformer encoder to obtain the final representations MP* € RI#*4 and
M9 e R7*4,

All the transformer encoders are as introduced in Section 3.2.2. Following the latest
trends in transformer-like architectures in BERT (Devlin et al., 2018) and GPT-2
(Radford et al., n.d.), a GELU activation (Hendrycks and Gimpel, 2016) is used for
the hidden layer of the feed-forward networks. Furthermore, for every transformer
encoder, the input to the encoder is directly mapped to d-dimensional vectors with
learnable parameters W € R%»*4 and b* € R?. Thus, H =) corresponds to the
result of this linear transformation. The input to the shared transformer encoder
is the output of the embedding layer, hence d;,, = d.,.;, while for the passage and

query transformers it is the output of the dual attention, hence d;,, = 5d.

4.1.3 Passage Ranker

In Nishida et al., 2019, obtaining relevance scores for each passage is approached as a
pointwise ranking problem. For the k-th passage in an example, the pointwise ranker
(PointRnk) receives as input the final encoder representation of the first token of each
passage M}* € R? which corresponds to the [CLS] token. The [CLS] token is an
artificial token, appended to the beginning of each passage and fine-tuned to gather
task-specific information, such as the passage relevance. For the k-th passage in the
example, the relevance probability 5P € Ris obtained through a linear mapping with

learnable parameter w” € R? followed by a sigmoid function.

[PF = sigmoid(M}* - w") (4.12)
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4.1.4 Answerability Classifier

The answerability classifier produces a probability P(«) € R, indicating the confid-
ence of the encoder that the query is answerable given the encoded passages. The
classifier takes as input the horizontal concatenation of the K [CLS] token repres-
entation, which is a vector of dimensionality Kd, maps it to a scalar through a linear

transformation and a sigmoid function.
P(a) = sigmoid([Mfl, ey MfK} : wc> (4.13)

, where w° € R¥? is a learnable parameter.

4.1.5 Decoder

The Decoder module is composed of a transformer decoder (Section 3.2.3) and a
multi-source pointer generator (Section 3.3). It is used to obtain 7' probability
distributions P/™Ma(y,) € RVl over the extended vocabulary for each position ¢
in the answer, by utilizing the passages and query representations MPr € REx9
M7 € R7*? from the Encoder, the relevance scores 3 € R¥ from the ranker, as well

as the answer embeddings EY € RT*dems

Similar, to the encoder transformer blocks, in the beginning of the decoder trans-
former, the answer embeddings are passed through a linear transformation to obtain
v rTxa,

(0)

HY W= EY . e 4 pie (4.14)

, where Wdee ¢ Rems*d and biec € R? are a learnable parameters.

A decoder layer is similar to the one introduced in section (Section 4.1.5), with an
additional encoder-decoder attention to account for the extra input sequence. Thus,
the i-th decoder layer is comprised of a multi-head attention module (Eq. 3.26) that
(i-1)

. Follow-

ing, there are another two multi-head attention modules (Eq. 3.27) that carry out

performs masked self-attention to the output of the previous layer HY

encoder-decoder attention, first using the query representation and then using the
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passage representations. At the end of each decoder layer, there is a feed-forward
network (Eq. 3.29) and, after each sublayer, a residual connection and layer normal-

ization (Eq. 3.30) are applied.

e dec i— i— i—

A —LNW(MHA (" 1 ) ”) (4.15)

= (i) ®) enc—dec - (@) - (i)

" — 1IN (MHA (a2, 70) + Ay ) (4.16)

=0 enc—dec = (1) = (7)

o= LN(C)( MHA (M7, BY) 4 HY ) (4.17)
i = (@ = ()

v — LN@ <FFN(Hy )+ HY ) (4.18)

, where MPeat = [MP1; . : MPK] € REEXD,

A multi-source pointer generator combines the copy distributions of the concatenated
passages PPeot(y,) € RVl and the query Pi(y,) € RVl as well as the fixed
vocabulary distribution P¥(y;) € RVl to get a final distribution over the extended

vocabulary.

The representation of the query and the t-th answer token are passed through an

additive attention module (Section 3.1.1).

¢!, af = AddAttn'? (M9, MY) (4.19)

, where ¢! € R? is the context vector of the query for the t-th answer token and the

attention weights o € R’ define a probability distribution over each position in the
query.

A similar process is followed for the concatenated passages MPe* where they are
passed through a shared additive attention module:
et afert = AddAttn® (Mot MY) (4.20)

, where ¢t € R? and o}t € REL,
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To prevent the model from attending to tokens from irrelevant passages, the relevance
probabilities J are used to modify the attention weights. Thus, before obtaining the

context vector (Eq. 3.5), the alphas are re-normalized as:

Peat 3
apen — Oty (4.21)

25005 - Briy)
, where f3;(;) is the relevance probability of the passage in which the i-th token is
part of.

To obtain the distribution over the fixed vocabulary P?(y;) € RVl a linear layer
projects the representation of the ¢-th answer token to a d,,;,-dimensional vector,
followed by another linear mapping to a vector dimensionality of |V/#¢4|. Finally, a
softmax operator transforms the vector to a probability distribution over the fixed

vocabulary.
P"(y) = softmax((M{ - W' +b') - W?2) (4.22)

fived
, where, W1 € R¥*dems pl € Réems and W2 € Réemv X1Vl are learnable parameters.

Note that in Nishida et al., 2019 W? is tied with W™ (Eq. 4.1), as proposed in
Inan, Khosravi and Socher, 2016. Experiments with tying these parameters provided
slightly worse results (Table A.2) and thus W? is not shared with W™ of Eq. 4.1

The attention weights of and af** are used to define the probability distributions

of the query P9(y,) € RVl and the concatenated passages PPet(y,) € RV over

the extended vocabulary.

Pq(yt) - OA? ’ Sgext)
PPect(y,) = o - Spey

, where S{_,, € {0, 137V and Stenty € {0, 1YEEXIVEl are the one-hot encoded

representations of the query and the concatenated passages in the extended vocab-

ulary.
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The two copy distributions and the fixed vocabulary distribution are combined with
weight factors AV, A\{, W € R, which are computed using the context of the query, the
combined context of the passages and representation of ¢-th answer token from the

decoder.
AV AN — softmax([MgJ, o] W 4 bA) (4.23)

, where W* € R3@*3 and b* € R? are learnable parameters.

The final distribution P/ (y,) € RIV*"'I of the tokens in the extended vocabulary

for the t-th answer token is:
PI(y,) = Ay - P(ye) + AL PU(ye) + A7 - PPeet () (4.24)

Note that the set the extended vocabulary, Ve D V/ized ig dynamically defined for
each tuple (Sé]ext), Sf’ ecc‘;;)) Additionally, the probability of a token that is part of the
extended vocabulary set (y, € V%), but is not part of the fixed one (y, ¢ V/ized),
is equal to zero in the fixed vocabulary distribution P"(y;) for all positions ¢ in the

answer.

4.1.6 Loss function

The model is trained by three separate losses that define a weighted sum into a final

loss.

EtOtal == lygen»cgen + ’yrnkﬁrnk + ’YClsﬁcls (425>

, where L, is the answer generation loss, L, is the relevance ranking loss, L
is the answerability classification loss and Ygen, Yrnk, Vs € R are the weight factors

that control their relative importance.
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e Answerability Classifier Loss

It is the negative binary cross-entropy between the true and predicted value,

averaged for all the examples in the batch B.

1
Jp— (a log P(a) + (1 —a) - log (1 - P(a))) (4.26)
N a€eB
, where N = |B|, a € {0,1} denotes the ground-truth for an example in
the batch and P(a) € (0,1) is the probability of answerability for the same
example, which is the output of the classifier (Section 4.1.4).

e Relevance Ranking Loss

The ranking loss is the negative binary cross-entropy between the true and pre-
dicted relevance for each passage in an example, averaged for all the examples
in the batch B.

L=t 2> (el (L) log(L- B)) (421)

rB3,KeB 1 k=1

, where for each example in the batch, K is the number of passages, r, € {0,1}
is the ground truth relevance label, and 5, € (0, 1) is the relevance probability
for the k-th passage.

e Answer Generation Loss

This loss operates on token prediction level and is the average negative log
probability of the ground-truth tokens, over the answer sequence, over the

answerable examples.

LI = — Nl 3 (;‘i( (e € V1) - log (P/™!( t)))) (4.28)

ans a,a,T,VertcB t=1

, where Ng,s = > ,cp a is the number of answerable examples in the batch and

for each example:

— a € {0, 1} indicates whether the example is answerable
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— T is the number of tokens in the sequence

— y, € {0, 1}Vl is the ground truth token for the ¢-th position in the

sequence
— Vet O Y fized g the set of tokens in the extended vocabulary

— T = > T'1(y, € Vo) is the number of known tokens in the sequence
— P/™(y,) € R is the probability of the ground truth token (Eq. 4.24)

The condition y; € V! covers the rare scenario where the ground-truth token
is not part of the fixed vocabulary, and it is not contained in the passages nor

the query.

4.2 Pairwise Passage Ranking

In the Pointwise Ranker (PointRnk) of Nishida et al., 2019, each passage is processed
independently from the others to obtain $P* € R, indicating how relevant is the k-th
passage only with respect to the query. More formally, PointRnk maximizes the
conditional probability P(rg|M{*), where 1, € {0,1} is the ground truth label for
the relevance of the k-th passage and M}* € R? is the vector representation of the
first token in the k-th passage, which corresponds to the [CLS] token, which is tuned

for the ranking and classification tasks.

It is important to note that although the [CLS| token representation of each pas-
sage incorporates query-specific information from the dual attention (Section 4.1.2),
it does not do contain information from the rest of the passages since there is no
cross-passage communication in the encoder. Thus, M?T* is a function of the k-th pas-

sage and the query, and as a result PointRnk maximizes the conditional probability

P(rk ’pka Q>

In order to approach ranking in a relative context and additionally use global in-
formation from all the passages, a Pairwise Ranker (PairRnk) is proposed. PairRnk,
instead of predicting whether a passage is relevant or not (absolute ranking), it learns
to identify the most relevant in a pair of passages (relative ranking). Formally, for
a pair of passages i, k in an example, PairRnk maximizes the conditional probabil-
ity P(r?®"|MP*, MP"), where r?*" € {0,1,2} is the ground truth label for the pair,
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indicating which passage is more relevant or if they are of equal relevance. Further-
more, PairRnk utilizes a transformer encoder to globally update the [CLS] token of
each passage with information from the rest. Consequently, each [CLS] token rep-

resentation is a function of all passages and the query, and thus for the k-th and i-th

passages, PairRnk maximizes the conditional probability P(r:" |p1, ..., Pk, q).
[ o] }" 1 o] 1| z] 1]t rpaii’
2 1 2 2 2 2
n NE 0 1 1 1 1 Decoder
0 AR EEREE (Combined Attention)
n 1 |lo 2] 2] 1|1
n 1 |lof 1] 2] 1|1
A
normalize aggregate
a I&loss Pairwise normalize
ey Scores ﬁ
(pair)
ﬁ k Relevance
rn Probabilities

Pairwise features
&
Linear Layer

A

1 Pk =Pk Globaly Informed
M‘ll) M‘ll) MI; [CLS] Tokens

Transformer Encoder

}

Mpcomb [CLS] Tokens
1

Figure 4.2: Pairwise Ranking Scheme.

A Transformer Encoder updates the [CLS] tokens with global information. For each pair of
[CLS] tokens, the pairwise features are passed through a linear layer to obtain the pairwise
class scores. Left path: The pairwise scores are normalized along the class dimension and
the E%ﬁr) loss is applied. Right path: The pairwise scores are aggregated along the class
dimension and normalized along the columns to obtain the relevance probabilities 8 € R,
which are passed to the Decoder of the QA-model. With yellow are the ground-truth
relevance labels, where the pointwise labels » € {0,1}¥ are transformed into pairwise
labels %" € {0, 1,2 5% (Eq. 4.29). For ease of representation the example in the figure

has K = 6 passages available, where the second passage is relevant.

Methodology 41



The methodology of PairRnk is given in more detail below.

The problem is transformed from absolute to relative by defining the pairwise ground-

truth labels for each pair k,7 of passages.

0, if rp, >y
pair

T =1, iftrg=mr (4.29)

2, if rp <1y

, where label 0 indicates that passage k is more relevant than i, label 1 indicates that
they are equally relevant and finally label 2 indicates that passage k is less relevant

than <.

A transformer encoder layer (Section 3.2.2) updates the [CLS] token representation

of each passage with information from the rest of the passages.

Mlpcomb — LN(a)( h/ff_ICA (Mfcomb) M{)comb) _|_ Mfcomb) (430)
]@fcomb — LN(b) <FFN (Mlpcomb> + Mlpcomb) (431)

 Pcomb 7 i
, where MPeomt M7 MPeomt € REX4 are the concatenated representations of the

[CLS] token for all the passages in the example, as output by the encoder, with
MYemt = [M}Y; ... MTE].

PairRnk combines the globally informed [CLS] token representations of the k-th and
i-th passages to obtain a feature vector MP*" € R* and maps it to the pairwise

scores 71" € R3.

MPST = | MPE, MP?, abs(MPs — MP), MP* @ MP: (4.32)

PRI — MO T (4.33)

, where abs(+) is the element-wise absolute value operator and W’ € R3 is a

learnable parameter.
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The scores are normalized to obtain a probability distribution over the three classes,

—pair

i e R3.

—pair

U = softmax (PP (4.34)

Finally, the pairwise passage ranking loss is defined as the correct class’s negative

log-likelihood, averaged per comparison, and per example.

T 1 K k 2 alr . azT
Ly = N > KK+ 1) > Z Z I(rp;" = j)log (Th") (4.35)

T.pairﬂ?pair?KGB

, where for an example in the batch, K is the number of passages, r7*"" € {0,1,2}
is the ground truth comparable relevance between the k-th and i-th passage, and
fi?;r € (0,1) is the probability of the label j, between the k-th and i-th passage.
I(-) is the indicator function, which is 1 if the expression is true and 0 otherwise.
Note that due to the symmetrical nature of the pairwise comparison matrix, to avoid
redundancy, only the elements that correspond to the lower triangular matrix are

taken into account, which are equal to K(K + 1)/2.

The pairwise scores are aggregated into a probability distribution over the passages,
which is utilized by the combined attention in the decoder (Eq. 4.21). For the
k-th passage, an overall advantage score b, € R is computed by averaging the net
relevant scores of each comparison in which k is involved. The net relevant score
of each comparison is the prediction score for the more-relevant class, minus the

prediction scores for the equally-relevant and less-relevant classes.

1 K Apair Apair Apair
b = K Z(TZH — Thia — Zz:& ) (4.36)

=1

The relevance probabilities 5 € RX are obtained by a softmax normalization over

the advantages of all the passages.
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S = softmax(b) (4.37)

It is easy to identify the differences in complexity between the PointRnk and the
PairRnk methods, which are exponential for PairRnk and linear for PointRnk. Usu-
ally, in multi-task learning scenarios, it is ideal to keep the auxiliary task modules, as
simple as possible, to force all the complexity in the shared parts of the model. This
way, the main task will benefit the most. Unlike most multi-task learning scenarios,
passage ranking is not precisely an auxiliary task since the probabilities S are essen-
tial for channeling the decoder’s attention to the most relevant passages. In other
words, the passage ranker is not an end-point of the model, but just a middle one,
and thus increasing its complexity is beneficial for the main task of answer generation
(Table 5.7).

4.3 Extractive-Abstractive Answer Style Transfer

This model is used to learn a mapping between answer styles, and more specifically,
from the QA (extractive) to the NLG (abstractive) answer style. To achieve that,
information from the relevant passage of each example and the query is additionally
used. Thus, the model learns a mapping from a triplet of QA Answer, relevant pas-
sage, and query to an NLG answer. More formally, for the t-th position in the NLG
answer the Style-transfer model maximizes the conditional P(yt|e, Dy Yp_1, - - ,yl),

where:
e y € NT is the NLG answer tokens in the vocabulary, with length T
e ¢ € NV is the QA answer tokens in the vocabulary, with length N

e p € N” are the tokens of the relevant passage that corresponds to the QA

answer and has a length of L
e ¢ € N’ is the query tokens in the vocabulary, with length J

Style-transfer is carried out by a transformer-based encoder-decoder model. The
encoder reads and fuses information from the three input sequences (e, p, ¢), and
the decoder models their interactions with the target sequence by applying multiple

attention modules. The decoder also employs a multi-source pointer generator that

Methodology 44



combines the three copy distributions of the input sequences and the fixed vocabulary
distribution, obtained from the decoder state, to produce a final distribution over

the extended vocabulary (Figure 4.3).
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Figure 4.3: Style-transfer Encoder-Decoder Transformer.
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An embedder module (Section 4.1.1) combines word and positional embeddings and
is shared between all four types of sequences. The embeddings of the QA answer,
the relevant passage and the query are passed through shared transformer encoder
(Section 3.2.2), common for all sequences from the encoder side. Then three dual
attention layers (Section 4.1.2), fuse information between each pair of sequences,
namely (p, q), (p, ), (¢, e), with learnable parameters w??, wP®, w? € R3?. Thus, for
the pair of relevant passage and query and for their representations from the shared
transformer encoder, H? € R¥*4 9 € R7*4 first their similarity matrix UP? € R¥*/
(Eq. 4.2) is normalized along its two dimensions to get attention weights AP4 € RL*/,
Bri € R/*L (Eq. 4.3). The attention weights are subsequently used to obtain the

updated representations:

APT = AP9 . []4 (4.38)
BPM = BP4. [P (4.39)
APa = Apa. pra (4.40)
Bri = Bra. v (4.41)

Which are concatenated to get the passage-updated query and query-updated pas-

sage representations G47P € REX4d Gr=a ¢ RIx4d,

Ga—P — [Hp’[lp%qu’[lpq ® Hp’qu ® HP] (4.42)
GP4 — [Hq, qu7§pq7 BP1 o H?, épq ® Hq] (443)

The same process is repeated for the dual attentions between passage with QA answer
and query with QA answer. Finally, the corresponding updated representations from
every pair are concatenated to their pre-attentional representations to get Glae)=r ¢
RLXde G(p,e)—>q c RJ><9d and G(p,q)—)e c RNXQd_
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G@e)=P = [P GI=P, Ge7] (4.44)
G(p,e)%q — [Hq, Gpﬁq’ G@HQ] (4.45)
GPa—e [He, GP™e, G977 (4.46)
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Relevant Passage (p) Query (q) QA Answer (e)

Figure 4.4: Dual Attention Fusion.

The representations of the previous transformer layer are fed in pairs into dual attention
modules. Then the corresponding updated representations are concatenated to the pre-
attentional representations. The outputs of this layer are now informed from all sequences
of the encoder side.

The fused representations are passed through transformer encoders, one for each type
of sequence. Finally, there is another block of dual attention fusion and sequence-
specific transformers, to obtain representations M? € RE*4 M7 € R7*4 and M¢ €

R¥*4 which are passed to the decoder module.

The decoder is made up of a transformer decoder and a multi-source pointer gen-
erator (Section 4.1.5). Each transformer decoder layer a masked self-attention (Eq.

3.26) for modelling the interactions within the NLG answer, three encoder-decoder
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attention modules (Eq. 3.27), one for each sequence from the encoder side and a
feed-forward network (Eq. 3.29). All modules are followed by residual connections
and layer normalization layers. The output of the transformer decoder MY € RT*4
is passed to the multi-source pointer generator, which combines the copy distribu-
tions from the three input sequences, together with the fixed vocabulary distribution.
Three additive attention modules are utilized to obtain the context and attention
vectors for the relevant passage, query, and QA-answer for ¢-th token in the NLG-

answer.

¢, af = AddAttn' (Me, M?) (4.47)
o = AddAttn'? (M9, M?) (4.48)
& of = AddAttn® (MP, M?) (4.49)

The representation of the input sequences in the extended vocabulary map attention
weight into the extended vocabulary distributions, while a feed-forward network

defines the distribution of the fixed vocabulary.

P(yr) = o - Slean) (4.50)
Pl(y) = af - S(qext) (4.51)
PP(y) = af - Sfemt) (4.52)
PY(y) = softmax((Mt“ Wb - W2) (4.53)

fived
, where W' € R¥*demb  pl ¢ Remv and W2 € Réeme IV “I gre learnable parameters.

The mixing weights A € R of each distribution are calculated by 4-way softmax nor-
malization on the concatenation of the context vectors and the NLG representation
for the t-th token.

AV NS AL NP = softmax([Mf, e Ew 4 bA) (4.54)
, where W* € R44*4 and b* € R? are learnable parameters.
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The final distribution of the t-th token over the extended vocabulary is a weighted

combination of all the four distributions.
PImel () = Ny - PY(y) + A - P(ye) + AL~ Pye) + AF - PP(y) (4.55)

The loss of the Style-transfer model is the negative log probability of the correct
tokens (Eq. 4.28), averaged over the length of each sequence and the number of

examples in the batch.

t-—3 3 (mx (e o (mw)) s

y,T,Ve” cB t=1

The trained Style-transfer model can be used on inference mode to generate an
abstractive NLG answer for any triplet of relevant passage, query, and extractive QA
answer in the train set. The augmented NLG dataset is made up of approximately
350,000 generated NLG answers and is denoted by NLG,,.

4.4 Issues with the Answerability Classifier

In Nishida et al., 2019, classification of an example, as answerable or not, is done by a
linear layer with learnable parameter w® € R%? where K is the number of passages.
The input to the classification layer, [M?', ... MPX] € RX? is the concatenation of
the first token representation, corresponding to the [CLS] token (Eq. 4.13). Several
issues arise with this approach, and namely, a restriction on the maximum number
of passages K, a positional bias, and an unnecessarily increased complexity by the

Kd number of parameters. More specifically:

e The classifier can handle a maximum of K passages per example, since
the number of passages K is included in the dimensionality of the learnable
parameter w®. Although this might not be an important issue for training and
evaluating the classifier on a dataset with a fixed number of passages, the model
cannot be applied to more general scenarios where the number of passages is

greater than K.
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e There is a positional bias towards the order of the passages in the
example. The parameter w¢, can be decomposed to K different vectors, with
w® = [wS;...;w$]. Thus, the classifier learns parameters w§ € R? which are
specific to passages placed in the k-th position of each example. Consequently,
if the order of the passages is shuffled in the example, the prediction of the
model changes, which should not be happening since the information stays
the same. One may argue, that the order of the passages in each example is
not completely random since the initial ordering has a mean average precision
(MAP) of 34.62. However, that value is quite low to enforce the model to
learn specific parameters for each position in the ordering. It is hypothesized
that this dependency results in significant noise during training, restricting the

classifier’s accuracy.

e The number of learnable parameters is very high for a purely auxil-
iary task. Unlike the relevance ranking task, which is not an end-point, the
answerability classifier is. That means that the information encoded by the
classifier does not have a direct connection to the decoding, but an indirect
one. Thus, ideally, the classifier should be as simple as possible to force a
substantial part of the complexity to the encoder. In other words, a simpler
classifier would result in the encoder producing representations that carry more

information.

In this research, the classifier is simplified to a smaller linear layer on the maximum

of the vertical concatenation of the [CLS] token representations.
P(a) = sigmoid(maxqufl; o MfKD : wc> (4.57)

, where w® € RY is a learnable parameter.

This approach addresses all the issues mentioned above since the classifier works for
an arbitrary number of passages K, there is no dependency on the ordering of the
passages in the example, and the number of learnable parameters is reduced by a
factor of K. For the rest of the thesis, this classifier is referred to as MaxzCls, while

the one of Masque is referred to as LinCls.
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Chapter 5

Experiments

5.1 Setup

5.1.1 Dataset

The dataset used for this research is the MS MARCO v2.1 (Nguyen et al., 2016),
which contains approximately 1 million queries that were inserted by users in the

Bing search engine. Each data-point has the following information:

e Query

e Query Type, with the majority of the cases (53%) is labelled as description,
26% is of numerical type and the rest equally distributed among Entity, Person
and Location. The full distribution of the query types also based on whether

they contain certain keywords can be found in Table 5.1.

e Passages that were retrieved with the Bing search engine using the query.
Each passage has three fields, which are text, URL and an indication of whether
it is relevant or not for answering the query. The number of passages in 97.28%
of the cases equals to 10, in 2.66% of the cases to less than 10. Finally, in some

rare cases, which amount to 0.048%, there are more than 10 passages available.

e Answers, which are one or more, short, extractive answers for the query, if
the query is answerable. These answers are referred to as QA-styled answers.
The queries contain a QA answer and are considered answerable in about 55%

of the total examples.

e Well-Formed Answers, which are longer, abstractive answers and are re-
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ferred to as NLG-styled answers. Note that these answers exist only for about

30% of the answerable queries.

(A) Keyword (B) Type

What 34.96% | Description 53.12%
How 16.8% | Numeric 26.12%
Where 3.46% | Entity 8.81%
Who 3.33% | Location 6.17%
When 2.71% | Person 5.78%
Which 1.79%

Why 1.67%

Other 27.83%

Table 5.1: Query distribution in train set of MS-MARCO.

In part (A) the queries are categorized by the keywords they contain. In part (B) the queries
are categorized by the query type section included in each example of MS-MARCO.

The dataset was constructed by human annotators, where they were presented with

a query and K passages, retrieved from Bing. Each passage was labelled as relevant

or not for answering the query. If there was at least one relevant passage, one or

more answers were provided for the query. In some selective cases, there was a second

round of answer construction, where human annotators re-wrote answers which did

not resemble full sentences, contained grammatical and syntactical errors or were

incomplete. These answers are the “Well-Formed Answers” of an example and are

at the centre of focus for this research.

Experiments
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Query albany mn population
Query Numeric
Type
relevant text url
0
Albany, Minnesota,as per 2017 US Census estimate,
Passages _ _
has a community population of 2,662 people.
] Albany is located in Stearns County, 20 miles west of
St. Cloud and 80 miles northwest of Minneapolis/St.
Paulon Interstate 94 (I-94). Albany has direct access
to State Highway 238, which originates in Albany.
0
0
Answers | ['2,662]
Well-
Formed | [The population of Albany, Minnesota is 2,662.]
Answers

Table 5.2: Example of a datapoint in MS-MARCO.

The query text, query type, passage, list of answers and list of well-formed answers of an
example, with the text of the non-relevant passages and the URLs being omitted for ease
of representation.

The complexity of this dataset, especially working with the “Well-Formed Answers”,

stems from several reasons.

1. The vast majority of the queries are non-factoid (Table 5.1), requiring complex

reasoning to form a comprehensive answer.

2. Answers are presented in an abstractive way, meaning that purely extractive

techniques would fail in producing a complete answer.

3. The context for each query is approximately 10 passages, which requires a se-
lection mechanism that focuses the attention of the model on the most relevant

ones.
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4. A query is not necessarily answerable given the available passages.

5. There are cases with more than one relevant passage and/or more than one

answer for each query.

Two subsets can be distinguished from each dataset: The ANS set, which includes
all the answerable examples and the NLG set, which includes all the answerable
examples that have an NLG answer, with NLG C ANS C ALL (Table 5.3).

train dev
ALL | 808731 101093
ANS | 502937 55578
NLG | 152551 12448

Table 5.3: Datasets and Subsets in MS-MARCO.

The dataset contains four types of sequences, namely passages, queries, QA answers
and NLG answers, which vary significantly in length (Figure 5.1). The mode of the
QA-style length distribution is located at the first bin (between 0 and 4 sub-tokens)
and signifies the extractive nature of the style. On the other side, the mode of the

NLG-style length distribution is located higher, with approximately 15 sub-tokens.

The dataset is preprocessed to remove noise and inconsistencies. Whole examples
are removed when they include an answer, but no indication of the relevant passage
is given and similarly when there is a relevant passage, but no answer is given. Fur-
thermore, within each example, duplicate passages, answers and well-formed answers
are removed. Lastly, a small percentage of queries contain substantial noise in the
form of either multiple continuous underscores or multiple continuous question and
exclamation marks. These queries push up the complexity during training, espe-
cially for the dual attention', (Section 4.1.2). For these cases, the noise is reduced
to a single instance, avoiding random rises in complexity and without any loss of

information.

!The complexity of the dual attention lies in computing the similarity matrix, which is |Bx K x
L x J, where B is the batch size, K is the number of passages, L is the maximum passage length in
an example and J the maximum query length. When an example with a noisy query is sampled,
this complexity may increase even by a factor of 4, causing out-of-memory issues.
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Figure 5.1: Sequence length distributions in the train set of MS-MARCO.

100 80 100

The x-axis corresponds to the length in sub-word tokens and the line denotes the average
value for each type.

5.1.2 Training

This section provides all the details regarding the training and implementation of
Masque (Section 4.1), the Style-transfer model (Section 4.3) and PREAST-QA,
where the hyper-parameters of Nishida et al., 2019 are in most cases adopted.
Masque and PREAST-QA are referred to as QA-models. The multi-task models
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that were trained without the decoder (Table 5.7) are referred to as Encoder-only

models.

Hardware and training time: All models were trained with four NVIDIA TI-
TAN V GPUs, using data parallelization, for eight epochs. A 12-core CPU machine
was utilized for preparing each batch, where six workers were employed. For the
implementation of Masque and PREAST-QA, training took 29 hours. Note that the
implementation of Masque in this research is trained in just 10% of the time repor-
ted? in Nishida et al., 2019. The reasons for this reduction are not only the absence
of contextualized embeddings but also extensive vectorization and a custom sampler
that balances GPU-allocation. Furthermore, the training of the encoder-only models
(Table 5.7), took approximately 8 hours and the training of the Style-transfer model

took roughly 5 hours, using the same hardware.

Model Size: The QA-models have 3 shared encoder layers, 5 passage encoder layers,
2 query encoder layers and 8 decoder layers. The number of attention heads A is 8§,
the model dimensionality d is 296 and the size of the hidden layers in the feed-forward
networks d, is 256. The hidden size was chosen to be smaller than the model size in
order to compress information. Finally, the dimensionality of the embeddings d.,.;
is 300. The encoder-only models have the same structure in the encoder and also

the same dimensionalities.

The Style-transfer model has the same dimensionalities as the QA-models, with 8
decoder layers, but its encoder is structured differently. It has 3 shared encoder
layers, followed by a layer of dual attention fusion, 3 passage encoder layers, 1 query
encoder layer and 3 QA-style encoder layers. After, another layer of dual attention
fusion is applied, followed again by another 2 passage encoder layers, 1 query encoder

layer and 2 QA-style encoder layers.

Initialization: In Nishida et al., 2019, weights were initialized by sampling from
N(0,0.02) and zero vectors for all biases. Contrary, in this research sampling both
weights and biases from U (—%, %), where d is the size of the layer, was found to
accelerate training in the beginning.? The gain parameter of normalization layers

was initialized with vectors of ones and their biases with zeros.

2In Nishida et al., 2019 they trained on 8 NVIDIA P100 GPUs for six days, making the total
of GPU hours 1152. In this research, the total GPU hours per run are just 116 (which can be
increased by another 20 hours for the training of the Style-transfer model).

3This conclusion was based only on experiments with a smaller portion of the dataset.
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Furthermore, the layers of the Style-transfer model that were common with the
Masque implementation were initialized with a converged checkpoint of Masque.
Thus, the Style-transfer model makes use of the whole MS Marco dataset, including

non-relevant passage and non-answerable queries.

Tokenization and Embeddings: All sequences were lowercased and the Bert-
Tokenizer of the HuggingFace Transformer library (Wolf et al., 2019) was used for
the tokenization. The size of the fixed vocabulary |V /| is roughly 30,000 and the
dimensionality of the embedding d,,; is 300. The majority of the tokens in the fixed
vocabulary, namely around 90%, are initialized with GloVe (Pennington, Socher and
Manning, 2014). For those tokens that are not part of GloVe or are special tokens,
initialization is done by sampling from N(0,0.01). The same procedure was followed
by both the QA-models and the Style-transfer model.

Sampling a Batch: The Encoder-only models use a batch size of 80, while the QA-
models were trained with a batch size of 44. Note that in terms of computational
resources and memory, the answerable examples are much heavier than the non-
answerable ones, since they determine the total number of tokens for which a decoder
loss is computed. To optimize the GPU usage, and facilitate an efficient training
procedure, the number of answerable examples in a batch was tuned to 27. For an
answerable example, an original NLG answer is always sampled if available. For
Masque, if an NLG answer does not exist, the QA answer is sampled, while For
PREAST-QA, the answer is sampled randomly from its QA answers or its generated
NLG answers. In Nishida et al., 2019 is not clear how the sampling process is
carried out, but in the experiments of this research, it was found that prioritizing
NLG answers is always better when abstractive answer generation is the primary
goal. For the passages, if more than 10 are available, all the relevant ones are
chosen, and the rest are randomly sampled. No custom batch sampler was used for

the encoder-only models.

The Style-transfer model is trained with a batch size of 80. As mentioned in Section
5.1.1, some examples contain multiple relevant passages, multiple QA answers and
multiple NLG answers. For those examples, which were approximately 5% of the
NLG set, it would create a significant amount of noise to just randomly sample the
triplet of relevant passage, QA answer and NLG answer, since the combination might

contain inconsistent information. To prevent the adverse effect training the Style-
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transfer with this noise, for each such example, the ROUGE-L score is used to find
the correct mappings within the set of all possible combinations of triplets. Thus,
during training, given a sampled NLG answer, the relevant passage, with the highest
ROUGE-L score with the NLG answer, is sampled. The same process is carried out
for the QA answer to complete the sampled triplet for the example.

Special Tokens: The fixed vocabulary for the QA-models includes six special tokens
in total. The [CLS] token is appended at the beginning of every passage, and it is
fined-tuned for answerability classification and passage ranking during training. The
[QA] and [NLG] tokens are appended at the beginning of every QA and NLG-styled
answer accordingly. They are fine-tuned during training to absorb the features of
each answer distribution and can subsequently be used during inference to condition
the decoder and control the desired style. The [EOS] token is appended at the end
of the target sequence and is fine-tuned to signify the end of the sequence generation
process. The [UNK] token is used to replace all the tokens that are not part of the
vocabulary. Finally, [PAD] tokens are appended to every type of sequence, to match

the maximum size of each type in a batch.

The Style-transfer model uses a fixed vocabulary with four special tokens. The
[CLS] token is not used since there is no classification nor ranking taking place.
Furthermore, decoding is done only on the NLG-style answer, and thus the [QA]

token is also not needed.

Truncation: During training, for the QQA-models, each query is truncated to 40
tokens and each passage and answer to 100. The maximum number of passages, K,
was set to 10, while for cases where K < 10, a vector with the [CLS] token and
[PAD] tokens is used instead.

Since only one passage is used in each example for the Style-transfer model (the
relevant one), due to the increased availability of memory, the relevant passage,
QA-style answer and NLG-style answers were truncated to 120 instead of 100. The

queries were still truncated at 40 tokens.

Optimizer: All models in this research were trained with an Adam optimizer
(Kingma and J. Ba, 2014), with 8 = 0.9, 85 = 0.999 and ¢ = 107%. Warm-up
training was additionally employed, where the learning rate is linearly increased

from zero to 2.5-107* in the first steps and then back to 0, by cosine annealing. In
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Nishida et al., 2019, Masque was trained with 2000 warm-up steps, which is adjusted
here to 4000, to account for the smaller batch size. Again, adjusting for the number
of steps and batch size, the warm-up steps for Encoder-only models are 2000 and
1000 for the Style-transfer model. Gradient clipping with a maximum norm of 1 was
used. Experiments with an increased learning rate of 0.3 and gradient accumulation

were also conducted.

Regularization: All models in this research, use dropout (N. Srivastava et al., 2014)
with a rate of 0.3 in all dot-product and dual attention operations. Additionally,
dropout, with a decreased rate of 0.1, was applied to the output of the embeddings®.
Furthermore, the modified version of L2 regularization (Loshchilov and Hutter, 2017)
was used, with w = 0.01 to all non-bias parameters. Finally, for all models that use
an answerability classifier or a pointwise ranker, label smoothing on the positive class

label was applied, making it equal to 0.9.

Loss: The QA-models are trained with a weighted sum of the answer generation,
passage ranking and answerability classification losses (Eq. 4.25) in a multi-task
framework. The weighting scheme of Nishida et al., 2019 is adopted for the Masque
implementation, namely with factors vz, = 1, 'yﬁﬁfnt) = 0.5 and v4s = 0.1. The
PairRnk method uses a different loss function (Eq. 4.35) than the PointRnk of
Masque, which results in a different loss scale. In order to keep the importance of
the ranking task equal for both ranking scenarios, the ranking weighting factor is
adjusted to %o

combination of the passage ranking and answerability classification losses. Similarly,

= 0.265. The Encoder-only models are trained with a weighted

to keep the relative and absolute importance of each task similar, the weight factors
are set to %Efﬁfm) =1, vﬁﬂm = 0.53 and 745 = 0.2. Finally, the Style-transfer model

is trained with the loss defined in Eq. 4.56. Details for deriving the weight factor

adjustments for PairRnk and Encoder-only models can be found in the Appendix C.

5.1.3 Inference and Evaluation

The evaluation of the answerability classifier is done in the ALL subset of the de-

velopment set. To provide results comparable to Nishida et al., 2019, performance

4In Nishida et al., 2019 this is also 0.3 but applied to the fused GloVe and ELMo embeddings.
Since in this implementation, only GloVe was used, applying a higher rate than 0.1 was found
to significantly decrease performance, due to the high restrictions on the information for each
embedding.
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is measured by first tuning the decision boundary to maximize the precision-recall
trade-off, and then the f1 score that corresponds to that decision boundary is repor-
ted.

For the passage ranking task, evaluation is done in the ANS set of the development
set, which includes all the answerable examples. The metrics used are the Mean Av-
erage Precision (MAP) and the Mean Reciprocal Rank (MRR). For each example,
r € {0,1}¥ is the ground truth relevance of the passages in descending order, ac-
cording to the predictions 3 € R¥ of the ranker, where K is the number of passages

in an example.

1 1 X KTk
MAP = o2, <Zk - I;]I(rk - 1)41{:1 ) (5.1)
1 K 1
MRR = — <Z I(r, = 1) - 1(B = maxk(ﬁ)>> (5.2)
| rKeD k=1 k

The difference between the two metrics is that the MRR takes into account only
the highest-ranked relevant passage, while MAP provides a more general view, by it

considering the ranking of all relevant passages.

Answer generation is done with a greedy algorithm that keeps generating tokens in
an autoregressive way until the [EOS] token is generated or the maximum number
of tokens, 100, is reached. The style of the answer is controlled by initializing the
generation with the [QA] or the [NLG] special token. For both the QA-models and
the Style-transfer model, evaluation is done in the NLG subset of the development
set, which includes all the answerable examples that have an NLG-style answer. The
widely used BLEU-1 (Papineni et al., 2002) and ROUGE-L (Lin, 2004) are reported
for evaluation, which measure the overlapping n-grams between the reference answer
and the generated answer. More specifically, bleu focuses on precision, while rouge
on recall. Note that decoding with a beam search did not provide any meaningful
increase”® for the development set of MS-MARCO and thus was not used.

5A beam search of size 5, where the average log-likelihood of each sequence determines the fitness
of the answer, provided an increase in ROUGE-L, but a considerably more substantial decrease in
BLEU-1.
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5.2 Results

5.2.1 Style-Transfer and Data Augmentation

The Style-transfer model (Section 4.3) is trained on the NLG subset of the train set,
and its performance is evaluated on the NLG subset of the development set. Results
show that it can produce synthetic NLG answers of high quality, from a triplet of
relevant passage, query and QA answer, achieving a ROUGE-L score of 87.02 and a
BLEU-1 score of 87.09. Additionally, for certain query types, such as “where” and
“who”, the generation scores are higher than 90 (Table 5.4). It is also worth noting
that the Style-transfer model can exactly map the QA answers to their NLG-styled
counterparts, in 37.6% of the total cases, achieving a perfect ROUGE-L score of 1.
An essential part of the Style-transfer model is its use of two dual attention fusion
layers that enable the relevant passage, query and QA answer to simultaneously
update each other. Including only one of those, significantly decreased the quality
of the generated NLG answers, by 1.5 ROUGE-L points.

The trained model is used to augment the MS-MARCO dataset by generating a
synthetic NLG answer for all the answerable examples that were lacking one (ANS\
NLG). The augmented NLG set is denoted NLGy,,, and has a size of approximately
350,000. To further assess the quality of the NLG,,,4 set, the Masque implementation
of this thesis (Section 4.1) uses it as additional training data. During training on
the ALL + NLG,,q, multi-style training is used, where an original NLG answer
is always sampled if available and otherwise there is a 50-50 sampling probability
between the QA answer and NLG,,, answer. Results indicate that synthetic data
provided by Style-transfer model increase the abstractive answer generation abilities
of the Masque, raising the overall ROUGE-L score by 0.65 points (Table 5.4).
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Masque Style-Transfer

Trained on ALL ALL + NLG,,, ALL + NLG&;; NLG
overall ROUGE-L

67.20 67.85 (+0.65) 68.38 (+1.18) 87.01
per-type ROUGE-L
Description (55%) 60.53 60.51(-0.02) 61.62 (+1.09) 82.62
Numeric (23%) 72.38  73.20 (+0.82) 73.49 (+1.11) 86.52
Entity (9%) 63.95 65.24 (+1.29) 65.21 (+1.26) 84.21
Location (7%) 79.62 81.51 (+1.89) 80.97 (+1.35) 91.17
Person (6%) 72.14 7353 (+1.39) 73.76 (+1.62) 88.70
per-keyword ROUGE-L
What (39%) 66.22  66.93 (+0.71) 67.64 (+1.42) 87.21
How (13%) 64.57  65.09 (+0.52) 65.46 (+0.99) 84.66
Definition (6%) 64.62  62.28 (+0.66) 67.19 (+2.57) 89.63
Where (4%) 74.57 75.82 (4+1.25) 74.99 (+0.42) 91.59
Who (4%) 74.40 7559 (+1.18) 76.58 (4+2.18) 90.86
When (3%) 7113 72.15 (+1.02) 72.25 (+1.12) 87.26
Which (2%) 70.45 72.02 (+1.57) 71.75 (+1.30) 85.31
Why (1%) 47.89 50.49 (+2.6)  49.84 (4+1.95) 83.65
Other (21%) 67.74  67.93 (+0.19) 68.26 (+0.52) 85.86

Table 5.4: Results of Masque with augmented data on the MS-MARCO dev set.

ROUGE-L score for Masque (Section 4.1) and the Style-transfer model (Section 4.3) on
the MS-MARCO development set. Apart from the overall ROUGE-L score, the ROUGE-L
score for each query type and keyword (Table 5.1) is also reported. Masque is trained with
three different set configuration. ALL corresponds to the entirety of the train set. NLGgygq
corresponds to the synthetic abstractive answer set, generated by the Style-transfer model.
NLGEL;; indicates the reduced version of synthetic abstractive answer set, without the high-
resource type queries that are underlined (An example is removed from the NLGg,q if it
is of type Description and contains either of the underlined keywords). The Style-transfer
is by default trained on the NLG subset. The number in the parenthesis of each type

and keyword indicates their percentage in the NLGg,4 set. The parenthesis in the scores

of Masque with the NLG,4 and NLG,(IZ; sets indicate the absolute improvement in the
ROUGE-L score from the model that was trained on the ALL set. With bold are the best
scores for each type and keyword among the Masque runs. There is a negative correlation
of 0.7 between the percentage of the queries in the dataset and the absolute improvement
brought by training on the NLGq,4 set. A positive correlation, of 0.18, is observed between
this improvement and the ROUGE-L score of the Style-transfer model.
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Analyzing the per-type and per-keyword ROUGE-L scores, it is found that the im-
provement brought to by the NLG,,,4 set, is more significant for low-resource queries,
where the correlation between the absolute improvement of Masque trained on the
ALL+NLG,,, set from Masque trained only on ALL set, and the percentage of quer-
ies in the NLGy,, set is equal to -0.7. It is worth noting that for description type
queries, which are by far the most resourceful queries, there is a slight drop in of 0.02
when using additional data. Thus, to further increase the positive effects of training
on synthetic data, a smaller synthetic NLG dataset, denoted by NLG&;; is used for
training, excluding high-resource queries that had little or no improvement. More
specifically, an example is excluded if it is labelled as description type and addi-
tionally contains either of the keywords “what”, “how” and “definition” or “define”.
Results on training with the selective synthetic NLG data indicate significantly more
substantial improvements for the high-resource query types that have a higher con-
tribution to the overall score, with an absolute improvement, from Masque trained
on the ALL set, reaching 1.18 ROUGE-L points. As a consequence of the fewer syn-
thetic NLG data, there is a slight decrease in the improvement of the low-resource

ueries, such as “which” and “why”.
)

5.2.2 Abstractive Question Answering

The efficacy of the proposed model of this thesis, PREAST-QA is compared against
the Masque baseline (Section 4.1) on the main task of abstractive answer genera-
tion and on the tasks of passage ranking and answerability classification (Table 5.5).
PREAST-QA uses PairRnk (Section 4.2) for passage ranking and MaxCls (Section
4.4) for answerability classification, as opposed to Masque that uses PointRnk (Sec-
tion 4.1.3) and LinCls (Section 4.1.4). Additionally, PREAST-QA is trained on the
joint set of ALL and NLG((l;;, where the latter one is composed of the synthetic
abstractive answers, generated by the Style-transfer model (Section 4.3). To ensure
that the results are less affected by the choice of hyper-parameters, both Masque
and PREAST-QA are run in three different settings, in terms of learning rate and
batch size, and the best results for each model are reported in Table 5.5, which is a
part of the full results, available in Table A.1. All the rest of the hyper-parameters
and procedures are as described in Section 5.1.2 and both models are trained with

multi-task and multi-style learning.
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Results show that the combined methods of this thesis, provide a significant im-
provement over the Masque baseline in abstractive answer generation, as indicated
primarily by the ROUGE-L score and ultimately also by the BLEU-1 score (Table
5.5). Furthermore, PREAST-QA obtains consistently higher results than Masque, as
indicated by the more extensive experiments presented in Appendix A. The gains of
PREAST-QA over Masque can be first attributed to its use of high quality synthetic
abstractive answers of NLG{;) (Table 5.4), proving that multi-style training can be
further enhanced and by including an intermediate step of style-transfer. Secondly,
the gains can also be traced to its superior ranking capabilities, as indicated by the
0.65 increase in both MAP and MRR. Although the original Masque implementa-
tion makes use of contextualized embeddings form ELMo, PREAST-QA bridges the
difference in abstractive answer generation to 1.3 ROUGE-L points, obtains com-
petitive results in passage ranking and finally surpasses it in terms of answerability

classification, by a large margin.

NLG Answer Passage Answerability

Generation Ranking Classification
ROUGE-L BLEU-1 | MAP MRR F1 Gt
Masque (Nishida et al., 2019) 69.771 65.56" | 69.517 69.96 78.93
Masque (this implementation) 67.60 63.46 | 68.49 68.96 78.41
PREAST-QA 68.47 64.14 | 69.16 69.64 79.811

Table 5.5: Results for Masque and PREAST-QA on the the MS-MARCO dev set.

Results on NLG answer generation, passage ranking and answerability classification of the
re-implementation of Masque and the proposed model of this thesis, PREAST-QA that
combines the mechanisms of PairRnk (Section 4.2) and MaxCls (Section 4.4) and is addi-
tionally trained with an augmented dataset NLG&Z;, generated by the Style-Transfer model
(Section 4.3). Both Masque and PREAST-QA were run in different hyper-parameters set-
tings, and the best runs for each model were selected for this table. The extended version of
these results can be found in Appendix A. The results of Nishida et al., 2019 are provided
for reference. The main difference between the Masque implementations is that Nishida
et al., 2019 uses contextualized embeddings from ELMo (Peters et al., 2018). MAP and
MRR are measured @K, where K is the number of passages in each example and F1 Qt,
where ¢t is the optimized decision boundary. With bold are best scores among the models
implemented in this research and with { are the overall best.
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(A) Query: we elect a u.s. representative for how many years?

Relevant Passage: Two (2) years. You elect a member of the US House of Representatives every two years.
Senate members serve for six years. Representatives of the US Congress serve two-year terms, with elections
being held in all years that are even numbered. Two (2) years.

Reference Answer: You elect a member of the US House of Representatives every two years

Masque Answer: we elect a u. s. representative for 2 years.

PREAST-QA Answer: we elect a member of the us house of representatives every two years.

(B) Query: chlorophyll can be found in .

Relevant Passage: Chlorophyll (also chlorophyl) is a term used for several closely related green pigments
found in cyanobacteria and the chloroplasts of algae and plants. Its name is derived from the Greek words
chloros (green) and phyllon (leaf).

Reference Answer: Chlorophyll can be found in cyanobacteria and the chloroplasts of algae and plants.

Masque Answer: chlorophyll can be found in cyanobacteria.

PREAST-QA Answer: chlorophyll can be found in cyanobacteria and the chloroplasts of algae and plants.

(C) Query: why don’t cats like water

Relevant Passage: The main reason, that cats don’t like water, is that it causes them to lose body heat.
However, this is only if they are forced into a body of water, most cats are ok with getting a little wet if
they can help it. Some cats actually enjoy water, to the point where they will happily take baths, and
swim around.

Reference Answer: The main reason, that cats don’t like water, is that it causes them to lose body heat.
Masque Answer: don't cats like water because of their sensitivity to its odor.

PREAST-QA Answer: cats don ’ t like water because it causes them to lose body heat.

Table 5.6: Generated Answers from Masque and PREAST-QA.

Examples from MS-MARCO development set with the query, the relevant passage, the
reference NLG answer and the generated answers from Masque and PREAST-QA using
the NLG style. Example (A): Both models have a correct answer, but Masque’s does
not have proper form. Example (C): Masque stopped generation early, and its answer is
incomplete, while PREAST-QA generated the complete answer. Example (C): The answer
of Masque to the “why” query is wrong in content and form. The answer of PREAST-QA
has the correct content and form.

Table 5.6 provides examples from the development set, that show how training on
the synthetic data aided in PREAST-QA having better form in abstractive answer
generation. More specifically, in example (A), while Masque just reversed the query
and added the required answer “2”, PREAST-QA chose to copy from the second
sentence, providing, in general, a more well-formed answer to the query. In example
(B), PREAST-QA continues generating after the point that Masque stopped, thus
having a complete answer. Finally, example (C) is a low-resource “why” query with
negation, which was confusing for Masque and thus answered it improperly both in

form and content. Contrary, PREAST-QA reversed the negation correctly from the
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query and provided not only the proper content but also the correct answering form.
It is hypothesized that the differences in the answers of the two models for example
(C) are a direct consequence of the additional 5,000 synthetic abstractive answers
for “why” queries, that PREAST-QA was trained with.
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Figure 5.2: Zero overlap between QA and NLG styles.

Y-axis measures the percentage of cases where the QA and NLG style predictions had zero
overlapping n-grams between them, for Masque and PREAST-QA. The percentage of cases
with zero overlaps between the two styles in the ground-truth answers of the development
set is also given for reference. All measurements were made in the NLG subset of the
development set. In the first figure, cases are categorized by type and in the second one
by keyword. ALL is the same for both figures. Predictions are made by the best models
of Masque and PREAST-QA that were included in Table 5.5.

Another interesting of training on the N LGaug set is that it alleviates a data bias
introduced by the multi-style training. More specifically, it is observed that the
artificial style tokens absorb certain biases caused by the differences in the QA and
NLG answer distributions. Consecutively, given the same passages and query, there
are cases, where different styles produce entirely different answers. The scale of
this adverse effect can be quantified by measuring the percentage of QA and NLG
answer pairs that have zero overlapping n-grams. Overall, the synthetic NLG answers
balanced the training data of the two styles and brought the zero overlapping cases
from 6.4% to 4.6%, with the effect being more significant for description type queries
the non-keyword category “other”. Although there was a 1.8% improvement, the zero
overlap between the ground-truth answers of the styles is at 1%, indicating that a
significant amount of bias still exists, even after the inclusion of the style-transfer

step into the framework of multi-style training. Also, note that the percentage of
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6

zero-overlapping QA-NLG pairs indicates the minimum® number of cases where the

QA answer is different from the NLG one.

5.2.3 Pairwise Ranking in Multi-task Learning

NLG Answer Passage Answerability
Generation Ranking Classification
ROUGE-L BLEU-1| MAP MRR F1 @t
Lok, Leis
PointRnk + LinCls - - 65.35  65.83 777
PointRnk + MaxCls - - 64.80  65.29 78.96
PairRnk + LinCls - - 67.23 67.72 77.61
PairRnk + MaxCls - - 67.08  67.56 79.26
— w/o p2p Transformer - - 66.14  66.63 79.18
Lyen, Lrnks Leis
Masque 67.20 62.54 68.49  68.96 78.41
Masque with PairRnk + MaxCls 67.94 63.29 | 69.12F 69.56f 79.721

Table 5.7: Results on Multi-task learning with/without answer generation.

Ranking and Classification results on the development set of MS-MARCO v2.1 for different
combinations of ranking and classifying mechanisms. PointRnk (Section 4.1.3) and LinCls
(Section 4.1.4) refer to the ranker and classifier of Masque (Nishida et al., 2019). PairRnk
(Section 4.2) and MaxCls (Section 4.4) refer to the ranker and classifier introduced here,
while p2p Transformer refers to the passage-to-passage transformer layer of the PairRnk
method. In the first part of the table, models use the same encoder (Section 4.1.2) and are
trained with a weighted sum of the ranking and classification losses. In the second part,
models use the same encoder and decoder (Section 4.1.5) and are trained with a weighted
sum of the answer generation, ranking and classification losses. Apart from the changes in
the weights of multi-task learning, all other hyper-parameters were kept fixed. With bold
are the best scores in each section and with f, the overall best.

To investigate in more depth the effect of the ranking and classification mechanism
proposed in this thesis, they are compared with the ones of Masque in scenarios where
the models are trained jointly for the tasks of passage ranking and answerability
classification. All the possible ranking and classification technique combinations

are examined in the first part of Table 5.7. An experiment where the passage-to-

6 A non-zero overlap might be caused by shared stopwords, such as“and”, that do not contribute
to the semantics of the answer.
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passage transformer is excluded from the PairRnk method is additionally conducted
to gain a better knowledge of its influence. The second part of the same table
includes an experiment where the ranking and classification techniques of Masque
are benchmarked against those of this research, with the decoder also being active,
to understand the actual impact that the secondary tasks have on the main task of

abstractive question answering.
The main findings of the experiments of Table 5.7 can be summarized as follows:

e PairRnk is strictly better than PointRnk, as indicated in terms of both
MAP and MRR, and with or without the answer generation task. Subsequently
proven is the importance of the information exchange between passages, en-
abled by the transformer layer in PairRnk as well as the advantage of casting
the pointwise ranking task to a pairwise problem, which can then be solved by
comparing the relevance of each passage to the rest. Additionally, the exclu-
sion of the transformer layer reveals that the pairwise nature of the ranker is
powerful enough by itself, and still surpasses PointRnk by a significant margin

in the corresponding metrics.

e MaxCls is strictly better than LinCls, as indicated again by the tuned
F1 score in the encoder-only and full-model scenarios. Consequently, the clas-
sification results confirm the hypothesis of Section 4.4, that the positional bias
introduced by horizontally concatenating the passages in LinCls, produces sig-

nificant noise during training, ultimately setting an upper limit to its accuracy.

e PairRnk and MaxCls lead to better answer generation, demonstrated
by the increase of 0.75 points in ROUGE-L and BLEU-1 in the scenario where
all tasked are jointly trained. This increase is primarily a direct effect of
the substantially more accurate relevance probabilities that the decoder re-
ceives from the ranker, which lead to better guidance of the generation process
through the combined attention (Eq. 4.21). Furthermore, it is an indirect ef-
fect of the increased quality of representations that the decoder receives from

the encoder, due to the absence of the noisy signals of LinCls.

Apart from the main findings discussed above, it is observed that the inclusion of the
answer generation task significantly improves the results of the ranking and classi-

fication tasks, independently of the mechanisms used. Furthermore, it is noted that
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the PairRnk method is combined better with the LinCls, at least in the experiments
of the encoder-only models. It can be hypothesized that this is due to the upper
bound in the classification accuracy, introduced by the positional bias of LinCls,
which creates more room for improvement in the ranking task (at the expense of the

classification task).

5.3 Application in a Scientific Domain

Research in Artificial Intelligence (AI) has been growing rapidly in recent years.
Only in 2019, the newly submitted Al-related papers in arXiv’ surpassed the levels
of 30,000, with their submission numbers growing at an exponential rate®. Thus,
methods of navigating this vast amount of research are becoming increasingly im-
portant. For that end, the proposed model of this thesis, PREAST-QA, is applied as
a complex question answering system in the domain of artificial intelligence literature.
More specifically, The model is included as a component in the AT Research Navig-
ator? of Zeta Alpha, the company where this research was carried out. PREAST-QA
receives as input a query along with K passages, retrieved with vector-based search
from a space of more than 100 thousand Al research papers, and provides an ab-

stractive answer to the query.

The performance of PREAST-QA on the out-of-domain scientific text of Al literature
was assessed with a small hand-crafted set of 270 Al-related questions from Quora!®.
These questions differ significantly from the ones in MS-MARCO, averaging in length
at 15 sub-tokens, with some of them containing even more than 30 sub-tokens. The
increased question length is a result of the Al terms that are usually included, which
are not part of the known vocabulary and are thus split into numerous parts. Such
an example is the term “convolutional” which is tokenized into “con-vo-lu-tion-al”.
Furthermore, the vast majority of the questions are descriptive, containing “what”,
“how” or “why” keywords (Figure 5.3). Each question was coupled with a set of 10
passages retrieved using Zeta Alphas’ vector-based search system, which were sub-

sequently truncated at 200 sub-tokens. Since these are unlabeled data, and no gold

"https://www.arxiv.org
8https://www.zeta-alpha.com/post/growth-of-ai-research-in-2020-steady-on-the-
exponential-path-in-times-of-crisis
https://search.zeta-alpha.com
Onttps://www.quora.com/
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answers exist, traditional metrics like ROUGE-L and BLEU-1 can not be reported.
Consequently, the performance of PREAST-QA is evaluated manually. Every case
was labelled as either “good”, if the question was answered properly, “acceptable”,
if at least some relevant information was provided, or “bad” if the generated answer

was irrelevant to the question.
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Figure 5.3: Length and Type distribution of the Quora questions.

Results of the manual evaluation process showed that PREAST-QA generates “good”
answers in approximately 17% of the cases, “acceptable” answers in 21% of the cases
and “bad” answers for the rest. The answer quality distribution changes drastically
if only the cases where the answer exists in the passages are considered. Under those
circumstances, “good” answers are a majority with 39%, while the “acceptable” ones
are at 36% and finally, the answer is of “bad” quality in 25% of the answerable

questions. Examples of different answer qualities are given in Table 5.8.

Contrary to examples from MS-MARCO, beam search was found to increase the
quality of the generated answers significantly, in the domain of AI research. The
positive effect of the beam search is to enable longer answers, since the model was
ending generation early, mainly due to the many unknown terms in the questions
and passages. The beam size was set to 5, and the average log-likelihood of its
tokens measured the fitness of each sequence. Since the model does not suffer from
repetition in neither MS-MARCO nor the Quora questions, n-gram blocking was
not applied. Interestingly, it was noted that for the examples, where the classifier of

PREAST-QA had enough confidence that the question is answerable, longer answers
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were preferable, even though they did not have the best log-likelihood among the
candidates. Thus, for the cases with P(a) > 0.3, beam search selects the longest
answer that is within reasonable bounds of log-likelihood, compared to the best
one. Furthermore, it was observed that PREAST-QA relied significantly more on
copying than generating, which is explained from the uncertainty brought by the
multiple unknown words and the different language features of scientific text. Finally,
PREAST-QA performed poorly in answering very long questions, since too much
context was provided by them, forcing it to transform the question to an answer,

disregarding the passages.

Answer Quality: Good

(A) What is the difference between logistic regression and Naive Bayes?
— The difference between naive bayes and logistic regression is due only
to the fact that the first is generative and the second discriminative;

the two classifiers are, for discrete input, identical in all other respects.
(B) Why is the pooling layer used in a convolution neural network?

— A pooling layer in a convolutional neural network enforces that the

representation of the data at that layer is invariant to small translations of the input data.

Answer Quality: Acceptable

(C) What is the Hessian matrix? What is it used for and for what reason?

< The hessian matrix is computationally and spatially expensive, especially for large models.
(D) Why do we use Naive Bayes classifiers?

< Naive bayes classifiers apply bayes 4™ theorem with the assumption of

conditional independence between every pair of features. We chose this classifier

because it has shown to perform surprisingly well on text problems.

Answer Quality: Bad

(E) What is an intuitive explanation of stochastic gradient descent?

— An intuitive alternative 6 to circumvent the need to solve this is to consider an
iterative solution, called gradient descent / ascent.
(F) Why do deep learning models use convolutional layers instead of fully-connected layers?

— Deep learning models use convolutional layers instead of fully connected layers.

Table 5.8: Generated answers by PREAST-QA for the Quora questions.

Two examples for each answer quality. (A) and (B) can be considered complete. In (C)
there is relevant information but not sufficient to answer the question and in (D) there is
copied noise. In (E) the answer is incorrect and in (F) the question is inverted since the
model was unable to find an answer.

Experiments 71



To conclude, PREAST-QA provides on average acceptable results for the task of
complex question answering in the domain of Al research literature. The most

important limitations are the following:

e There is barrier introduced by the different language of the scientific docu-
ments, being substantial more formal than the text of MS-MARCO.

e Scientific documents contain various terms that are unknown to the model
or even confusing, such as “CNN”, where the model has learned it as the
media channel and not a class of neural networks. The use of contextualized

embeddings can potentially alleviate this negative effect.

e Passages retrieved from scientific documents additionally contain many refer-
ences and mathematical equations that introduce a certain degree of noise to
the model.

e A bias towards the beginning of each passage was observed since PREAST-QA
is trained on passages that average in length at 75 sub-tokens. Consequently,
even if the answer is included in the second half of the passage, it was rarely
identified by the model.
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Chapter 6

Conclusions and Further Research

6.1 Conclusions

This research is focused on the task of Question-Answering (QA), and more spe-
cifically in answering complex queries with abstractive language generation. The
task is investigated in a scenario where multiple passages are available, queries are
not always answerable, and answers are primarily extractive, as facilitated by the
MS-MARCO dataset. In such a setting, a high-quality QA model has to be able to
identify the most relevant passages and effectively learn how to produce abstractive
answers by using knowledge from extractive answers. To provide a better frame-
work for solving the task, PREAST-QA, a transformer encoder-decoder, is proposed,
which is based on the Masque multi-task and multi-style model of Nishida et al., 2019.
PREAST-QA achieves higher results than Masque in the MS-MARCO NLG task, by
employing a pairwise ranker and introducing a Style-transfer model that augments

the dataset with more abstractive training data.

The proposed ranker of this research, PairRnk casts the pointwise problem of la-
belling each passage as relevant or not, to a pairwise one, where the ranker has to
identify the most relevant passage in each pairwise comparison in the example. To
achieve that, PairRnk additionally employs a transformer encoder layer that enables
passage-to-passage information exchange. Part of the success of PREAST-QA is
traced to the guidance that it receives from the relevance probabilities obtained by
PairRnk. The pairwise approach is systematically better than the pointwise in many
multi-task learning experiments, and even in the absence of the passage-to-passage

transformer layer.

For augmenting the MS-MARCO dataset with 3x more abstractive answers, a Style-
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transfer model, which is a modified encoder-decoder transformer, learns a mapping
between a triplet of relevant passage, query and extractive answer to an abstractive
answer. To achieve that, it employs several transformer layers and dual attention
fusions in the encoder, as well as a 4-way multi-source pointer-generator in the de-
coder. The Style-transfer model learns to produce high-quality synthetic abstractive
answers that are subsequently used by PREAST-QA in training. The inclusion of
these augmented data, as an additional step in multi-style learning, is found to sig-
nificantly increases the abstractive answering abilities of a QA model. The effect
is even more substantial after a selection process in the synthetic data, excluding
answers for high-resource query-types. Furthermore, training on the synthetic ab-
stractive answers helped alleviate a data bias absorbed by the artificial tokens during
multi-style training, which is causing the predictions of the two answering styles to

be completely different in certain cases.

This research additionally solves a positional bias found in the large, linear classifier
of Masque, which was introducing significant noise during training, restricting its
performance. PREAST-QA instead uses a simpler max-pooling classifier that out-
performs the one of Masque by a considerable margin and enables classification with

a variable number of passages.

The capabilities of the proposed model were also assessed in an out-of-domain ap-
plication scenario, and more specifically, that of Al scientific research. Certain limit-
ations, like the poor understanding of scientific language and terms, were identified.
These limitations forced the model to rely more on copying than generating, in order

to obtain on average good results.

To conclude, firstly, the results of this thesis indicate that a pointwise ranker is not
adequate for identifying the relevant passages for answering a query, whereas the
PairRnk method is better at modelling the problem. Secondly, multi-style learning
is found to leave the abstractive answering task under-trained, especially in low-
resource scenarios, which can be alleviated by using synthetic data from a style-

transfer model.
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6.2 Further Research

The high-quality of the synthetic data generated by the Style-transfer model had
a crucial role in the abstractive answering performance of PREAST-QA. There
are two possible ways to increase their quality further, subsequently improving fu-
ture Question-Answering systems. Firstly, the Style-transfer model proposed here is
trained only for uni-directional mapping, from the extractive to the abstractive style.
This process can become bi-directional by the use of multi-style learning, where sim-
ilarly to the QA models described in this thesis, the Style-transfer model can sample
one of the styles as input and the other one as a target. Learning a bi-directional
mapping between styles, would increase the style-agnostic generation abilities of the
Style-transfer model and also provide the option to use synthetic extractive answers

in the training of QA models.

In this research, the style-transfer task and the QA task are approached separately
and independently of each other. Thus, another possible direction for future works is
to train the Style-transfer model end-to-end with the QA system, in a scenario similar
to the training of Generative Adversarial Networks (Goodfellow et al., 2014). In that
case, the Style-transfer model plays the role of the generator, providing synthetic
answers to the QA-model, which additionally uses a discriminator for identifying
them from the original answers. This process would force the Style-transfer model
to generate progressively better synthetic answers, with the goal of making them

indistinguishable from the true ones.

Apart from increasing the quality of the synthetic data, research on methods to
further decrease the bias of multi-style training should also be conducted. Ideally, the
two styles should be able to produce the same content in different styles. A potential
solution is to include a term in the loss that penalizes abstractive generations that
do not overlap with the extractive gold answer. Excluding the 1% of the examples
in the training set of MS-MARCO, where the gold extractive and abstractive answer

have zero overlap with each other, should also aid in the resolution of this bias.

The methods proposed in this research were only applied for the case of MS-MARCO,
and thus, it would be interesting to assess their effect on other Question Answering
datasets. The recently proposed ELI5 (Fan et al., 2019) makes for a good challenge,
having queries that are more complex than those of MS-MARCO and usually require
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much lengthier answers. Additionally, multiple passages are provided for the queries,
along with extractive and abstractive answers. Furthermore, the PairRnk mechanism
proved to be successful not only the multi-task scenario, where it is jointly trained
with a decoder but also in the purely ranking tasks (Table 5.7), indicating that it can
be useful for more general applications in Information Retrieval. A certain limitation
lies in the fact that its efficacy was tested for small-scaled retrieval scenarios, usually
with ten available passages for each query and thus its performance for large-scale

retrieval has to be first assessed.

Finally, issues with proper query and passage understanding are observed for PREAST-
QA (Table B.1), probably due to the absence of contextual information. This absence
was more significant for the application of the model in the domain of Al scientific
literature (Section 5.3). As also indicated by the gap of more than 2 ROUGE-L
points between the implementation of Masque here and the one of Nishida et al.,
2019, the use of contextualized embeddings plays a crucial role in obtaining state-
of-the-art performance in abstractive question answering. It can be hypothesized
that the use of embeddings from ELMo (Peters et al., 2018) or BERT (Devlin et al.,
2018) will increase further the performance of both the Style-transfer model and
PREAST-QA.
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Appendix A
Additional Results

NLG Anwser QA Anwser Passage Answerability
Generation Generation Ranking Classification
ROUGE-L BLEU-1 | ROUGE-L BLEU-1| MAP MRR | F1 @t threshold

Ir =25e4 bs =44

Masque 67.20 62.54 50.64 40.72 68.67  69.16 | 78.51 0.4857
— with PairRnk + MaxCls 67.94 63.29 51.24 41.37 69.12  69.56 | 79.72 0.5298
— with NLG&;()] 68.37 62.96 50.91 41.13 68.76  69.24 | 78.57 0.4393
PREAST-QA 68.477 64.14" 51.431 43.49" | 69.16" 69.64" | 79.817  0.5131
Ir =3e™*, bs = 44

Masque 67.47 63.59 51.18 41.45 68.64  69.13 | 78.42 0.4678
— with PairRnk + MaxCls 67.85 63.80 51.21 41.88 68.84  69.31 | 79.56 0.4926
— with NLGSJJ; 67.82 62.96 50.8 41.59 68.60  69.09 | 78.42 0.4440
PREAST-QA 68.02 63.35 51.15 41.45 68.92 69.40 | 79.76 0.5126
Ir =2.5¢74 bs =88

Masque 67.60 63.46 50.85 42.05 68.49  68.96 | 78.41 0.4522
PREAST-QA 68.29 63.15 51.05 41.35 68.93 69.42 | 79.78 0.5267

Table A.1: Additional results on the MS-MARCO dev set.

NLG-style and QA-style answer generation are measured in the NLG subset, Passage
Ranking is measured in the ANS subset and Answerability Classification is measured in
the ALL subset. Apart from the indicated hyper-parameters, Ir for learning rate and bs
for batch size, the rest are the same. Masque refers to the implementation of this research
(Section 4.1) and PREAST-QA to the proposed model that combines PairRnk (Section
4.2), MaxCls (Section 4.4) and is additionally trained on the augmented abstractive answers
NLGEL;& generated by the Style-transfer model (Section 4.3). MAP and MRR are measured
@K, where K is the number of passages in each answerable example. F'1 score is measured
@t, where t is the optimal decision threshold. With bold are the best scores for each
hyper-parameter setting and with { are the best scores overall.

To prove the efficacy of PREAST-QA, extensive experiments are run using different
hyperparameter settings, in terms of learning rate and batch size. PREAST-QA is
consistently better than Masque in all settings as measured primarily by the ROUGE-
L score in NLG answer generation. Additionally, although PREAST-QA uses less
QA-styled answer during training, in favour of the synthetic NLG-styled answers,
it still achieves competitive results in QA answer generation, which are even better
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than Masque in many cases. All the models that use the proposed ranking (PairRnk)
and classification (MaxCls) techniques of this research surpass those of Masque by
a large margin in the corresponding metrics, MAP, MRR and F1@t. The increased
performance of the methods is independent of the hyper-parameters used. Finally,
there is considerable variance in BLEU-1 among the models, since the primary metric
for selecting the best models is ROUGE-L. A slight decrease in the BLEU-1 of the
models that are trained on the synthetic NLG data is attributed to the brevity
penalty of the metric since the synthetic answers are slightly shorter than the original
ones.

NLG Anwser Passage Answerability

Generation Ranking Classification
Rouge-. Bleu-1 | MAP MRR F1 @t
PREAST-QA 68.47 64.14 | 69.16 69.64 79.81
— with tied embeddings | 68.13 63.66 | 68.91 69.39 79.73

Table A.2: Results of PREAST-QA with tied input and output embeddings.

Comparison between PREAST-QA (1) without and (2) with sharing the parameters of the
input (Eq. 4.1) and output (Eq. 4.22) embedding matrix. Both models were trained in
the same hyper-parameter setting. The PREAST-QA run without the tied embeddings is
the same as the one of Table A.1. Results are on the development set of MS-MARCO.
Abstractive Answer generation is evaluated on the NLG subset, passage ranking on the
ANS subset and answerability classification on the ALL subset. With bold are the best
for every metric between the two runs.

In Nishida et al., 2019, the method of tying the embeddings of the input and output
is followed, which has been shown to regularize the learned embeddings and lead to
better performance (Inan, Khosravi and Socher, 2016). By tying the embeddings
of PREAST-QA, a slight drop in the performance of all task was observed (Table
A.2). This is probably caused by substantial differences in the input and output
language that over-regularize the single embedding matrix, eventually leading to a
worse understanding of the input text and worse predictions.
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Appendix B

Additional Generated Answers

(A) Query: what is office depot return policy

Relevant Passage: 100% Satisfaction Guarantee: All returns and exchanges must be in original condition and
include all accessories. Office Depot reserves the right to deny any return or exchange and may request
identification as a condition of your return or exchange.

Reference Answer: As per the office depot return policy, office Depot reserves the right to deny any return

or exchange and may request identification as a condition of your return or exchange.

Masque Answer: office depot return policy is a delaware corporation, including its subsidiaries, parent companies,
or affiliates.

PREAST-QA Answer: office depot return policy is the right to deny any return or exchange and may request
identification as a condition of your return or exchange.

(B) Query: is argintina european country

Relevant Passage: 1 Argentina is South American South America is made up of a dozen independent countries
and three dependencies, with one of the largest nations being Argentina. 2 Many individuals are unfamiliar with
this c.... 3 Europe on a Budget: 21 Free Walking Tours in Europe Walking tours can be a great way to get to
know a new city.

Reference Answer: No, Argentina is not an European Country.

Masque Answer: no, argintina is not european country.

PREAST-QA Answer: yes, argintina is european country.

(C) Query: how many days are in three years

Relevant Passage: assuming that there are 365 days in each year, multiply that by 3 for the number of days in
three years.... 365*3 = 1095 days in three years. In cases where there might be a leap year — simply add 1 to
the outcome, thus answer is 1096 days in 3 years. aloofnerd - 9 years ago.

Reference Answer: There are 1095 days in three years.

Masque Answer: there are 365 days in three years.

PREAST-QA Answer: there are 1095 days in three years.

(D) Query: ok city population

Relevant Passage: Oklahoma City Population 2017. Oklahoma City is the capital and largest city of
Oklahoma, and ranks 29th in the US in terms of population. At the 2010 census, its population was
579,999, but a metropolitan population exceeding 1.25 million. In 2014, Oklahoma City has an
estimated population of 1.31 million people.

Reference Answer: The population of Oklahoma City is 1.31 million.

Masque Answer: the population of oklahoma city is 579,999.

PREAST-QA Answer: the population of ok city is 579,999.

(E) Query: how long was the battle of passchendaele timeline

Relevant Passage: Battle of Passchendaele: 31 July - 6 November 1917. Officially known as the Third Battle
of Ypres, Passchendaele became infamous not only for the scale of casualties, but also for the mud.

Reference Answer: The battle of Passchendaele timeline was 31 July to 6 November 1917.

Masque Answer: the battle of passchendaele was timeline for five miles.

PREAST-QA Answer: the battle of passchendaele timeline was 31 july to 6 november 1917.

Table B.1: Additional Generated Answers from Masque and PREAST-QA.
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(A): Masque has wrong content, providing an answer about “Home Depot” and not
about its cancellation policy. PREAST-QA has the correct content, but the wording
is not proper. (B): Correct yes/no prediction by Masque and incorrect by PREAST-
QA, but both classifiers assigned a low probability of answerability, indicating that
none of the models has a proper understanding of the query. The reasoning that
Argentina is South America, and thus not in Europe was required. In general, an
increased difficulty in answering yes/no questions was observed for both models.
(C): Incorrect copying of numerical value from Masque, probably confused by 365
(wrong) being earlier in the sentence than 1095 (correct). (D): Answer is incorrect
for both models in a considerably complicated numerical query, in which reasoning
over time had to be made and choose the most recent estimate of population. (E):
Incorrect understanding of the query by Masque, leading to an answer about length
in space and not in time.
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Appendix C
Derivation of Multi-task Loss Weights

To ensure that the importance of the ranking task in the multi-task framework
remains the same, when either of the RnkPoint (Section 4.1.3) or PairRnk (Section
4.2) methods are used, different weight factors have to be chosen. The weight factors
of Nishida et al., 2019 are adopted also for this thesis, which are 74, = 1 for the

answer generation loss (Eq. 4.28), 79" = 0.5 for the pointwise ranking loss (Eq.
4.27) and ycls = 0.1 for the answerablhty classification loss (Eq. 4.26). Thus, 24"

(point)

has to be set proportionally to v,,, = by adjusting it with the ratio of the expected

losses for RnkPoint and PairRnk.

E[cPom]
= St o
rnk

(C.2)

By assuming for simplicity, that every example has the same number of passages K,
the expected losses are expected negative log-likelihood for each passage.

For RnkPoint, with » = 0 indicating the non-relevance class and r = 1 the relevant
one:

E[£25™)] = —(P(r = 0)log P(r = 0) + P(r = 1)log P(r = 1)) (C.3)

rnk

, where P(r =1) =1 — P(r = 0) is equal to the ratio of relevant passages to all the
passages in the dataset, which is Tel = 0.066.

E[£55™] = = ((1 - 0.066) - log(1 — 0.066) + 0.066 - log(0.066)) (C.4)
= —0.2432 (C.5)
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Similarly, for PairRnk, with r?*" = ( indicating the more-relevant class, r?*" = 1
indicating the equal-relevance class and 7P*" = 2 indicating the less-relevant class:

E{E(pair)} _ Z P(Tpair _ ]> 1ng(rpaz‘r — ,]) (06)

rnk
je{0,1,2}

For passages k and i, the probability that they are of equal relevance is:

P(rP¥" = 1) = P(r = 0)* + P(r = 1)* = 0.8767 (C.7)

Then for the other two classes, and due to symmetry:

_1—P(rrem = 1)
N 2

P(rP" = 0) = P(rP" = 1) = 0.0617 (C.8)

And the expected pairwise loss is calculated as:

E[£57] = —(2-0.0617 - 10g(0.0617) + 0.8767 - log(0.8767) ) = —0.4589  (C.9)

rnk

Thus, the weighting factor of the PairRnk loss is:

(point)

Trnk = W%nk

rnk
—0.2432
T —0.4589
= 0.265 (C.12)

0.5 (C.11)

Finally, for the encoder-only models (Table 5.7), in the absence of an answer gener-
ation loss, the weight factor for the pointwise ranking method is scaled to 1, and the
rest are adjusted accordingly.
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f)/gen Yrnk Vels
Encoder-Only
PointRnk + CatCls 0 1 0.2
PointRnk + MaxCls | 0 1 0.2
PairRnk + CatCls 0 0.53 | 0.2
PairRnk + MaxCls 0 0.53 | 0.2
QA-models
Masque 1 0.5 | 0.1
PREAST-QA 1 ]10.265] 0.1

Table C.1: Loss weights in Multi-task learning.
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